Lianyu Hu

alt text 

Phd Student,
School of Software,
Dalian University of Technology.
Dalian City, China
E-mail: hly4ml(at)gmail.com

About me

I received the M.Sc. degree in computer science from Ningbo University, China, in 2019.
I am currently working toward a Ph.D. degree (expected to graduate in June 2025) under the supervision of Prof. Zengyou He at Dalian University of Technology.
My research interests include: Machine Learning, Data Mining and Causal Inference.

Research

Current Work

  • Statistical Hypothesis Test

  • Interpretable Clustering

  • Categorical Data

Under Review

  1. Zengyou He*, Zerun Li, Junjie Dong, Xinying Liu, Mudi Jiang, Lianyu Hu. "Conjunction Subspaces Test for Conformal and Selective Classification." [link]

  2. Lianyu Hu, Mudi Jiang, Junjie Dong, Xinying Liu, Zengyou He*. "Interpretable Clustering: A Survey." [link]

  3. Mudi Jiang, Lianyu Hu, Zengyou He, Zhikui Chen*. "Interpretable Multi-View Clustering." [link]

  4. Junjie Dong, Mudi Jiang, Lianyu Hu, and Zengyou He*. "Hamming Encoder: Mining Discriminative k-mers for Discrete Sequence Classification." [link]

  5. Zengyou He*, Yifan Tang, Lianyu Hu, Mudi Jiang, Yan Liu. "Personalized Interpretable Classification." [link]

  6. Lianyu Hu, Mudi Jiang, Yan Liu, and Zengyou He*. "Significance-Based Categorical Data Clustering." [link]

Selected Publications

  1. Lianyu Hu, Mudi Jiang, Junjie Dong, Xinying Liu, Zengyou He*. "Interpretable categorical data clustering via hypothesis testing." Pattern Recognition, 2025.
    [link][code]

  2. Lianyu Hu, Junjie Dong, Mudi Jiang, Yan Liu, and Zengyou He*. "Clusterability test for categorical data." Knowledge and Information Systems, 2025.
    [link][pdf][code]

  3. Lianyu Hu, Mudi Jiang, Xinying Liu, Zengyou He*. "Significance-based decision tree for interpretable categorical data clustering." Information Sciences, 2025.
    [link][code]

  4. Caiming Zhong*, Lianyu Hu, Xiaodong Yue et al. "Ensemble clustering based on evidence extracted from the co-association matrix." Pattern Recognition, 2019.
    [link][pdf][code]

Other Publications

  1. Hailu Tan, Yan Liu, Xinying Liu, Lianyu Hu, Zengyou He*. "Interpretable link prediction." Chaos, Solitons & Fractals, 2025. [link][code]

  2. Zengyou He*, Xiaolei Li, Lianyu Hu, Mudi Jiang, Yan Liu. "Community structure testing by counting frequent common neighbor sets." Information Sciences, 2025. [link][code]

  3. Junjie Dong, Xinyi Yang, Mudi Jiang, Lianyu Hu, Zengyou He*. "Interpretable sequence clustering." Information Sciences, 2025. [link][code]

  4. Zengyou He, Jun Lou, Yan Liu*, Lianyu Hu, Mudi Jiang. "Node Centrality Inference via Hypothesis Testing." Statistical Analysis and Data Mining, 2024. [link]

  5. Zengyou He*, Jiaqi Wang, Mudi Jiang, Lianyu Hu, Quan Zou*. "Random subsequence forests." Information Sciences, 2024. [link][code]

  6. Mudi Jiang, Lianyu Hu, Xin Han, Yong Zhou, and Zengyou He*. "A randomized algorithm for clustering discrete sequences." Pattern Recognition, 2024. [link][code]

  7. Yan Liu, Xue Feng, Jun Lou, Lianyu Hu, and Zengyou He*. "Central node identification via weighted kernel density estimation." Data Mining and Knowledge Discovery, 2024. [link]

  8. Mudi Jiang, Jiaqi Wang, Lianyu Hu, and Zengyou He*. "Random forest clustering for discrete sequences." Pattern Recognition Letters, 2023. [link]

  9. Yan Liu, Mudi Jiang, Lianyu Hu, and Zengyou He*. "The statistical nature of h-index of a network node and its extensions." Journal of Informetrics, 2023. [link][pdf][code]

  10. Yan Liu, Xiaoqi Wei, Wenfang Chen, Lianyu Hu, and Zengyou He*. "A graph-traversal approach to identify influential nodes in a network." Patterns, 2021. [link][pdf][code]

  11. Lianyu Hu, and Caiming Zhong*. "An internal validity index based on density-involved distance." IEEE Access, 2019.
    [link][pdf][code]

Note: * indicates the corresponding author.

Full list of publications in Google Scholar.

Academic service

Reviewer

  • IEEE Transactions on Knowledge and Data Engineering

  • Statistics and Computing

  • IEEE Access

More details in Publons