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A B S T R A C T

Categorical data clustering algorithms are extensively investigated but it is still challenging to explain or
understand their output clusters. Hence, it is highly demanded to develop interpretable clustering algorithms
that are capable of explaining categorical clusters in terms of decision trees or rules. However, most existing
interpretable clustering algorithms focus on numeric data and the development of corresponding algorithms
for categorical data is still in the infant stage. In this paper, we tackle the problem of interpretable categorical
data clustering by growing a binary decision tree in an unsupervised manner. We formulate the candidate
split evaluation issue as a multiple hypothesis testing problem, where the null hypothesis posits that there is
no association between each attribute and the candidate split. Subsequently, the 𝑝-value for each candidate
split is calculated by aggregating individual test statistics from all attributes. Thereafter, a significance-based
splitting criteria is established. This involves choosing an optimal split with the smallest 𝑝-value for tree growth
and using a significance level to stop the non-significant split. Extensive experimental results on real-world
data sets demonstrate that our algorithm achieves comparable performance in terms of cluster quality and
explainability relative to those of state-of-the-art counterparts.
1. Introduction

In the realm of machine learning, cluster analysis is an essential
technique for data exploration. Its main objective is to divide heteroge-
neous data sets into multiple groups, each with similar characteristics.
This methodology is extensively employed across various disciplines,
including biology, medicine, astronomy, and social sciences. The chal-
lenge escalates when dealing with categorical data [1], where het-
erogeneity is prevalent both between and within attributes due to
their discrete nature, making categorical data clustering a particularly
complex task.

Numerous clustering algorithms have been developed for processing
categorical data [2], with their results often utilized in various sub-
sequent applications [3]. Mirroring their numerical data counterparts,
these categorical data clustering algorithms typically focus on optimiz-
ing a specific target function [4]. However, there is a noticeable lack
in the interpretability and explainability of these clustering outcomes,
posing decision-making challenges for users when employing these
algorithms.

Recently, the development of interpretable clustering algorithms
has received much attention. In general, existing research efforts to-
wards this direction can be categorized into two classes, as outlined
in [5]: (1) Pre-modeling (interpretability), emphasizing that the cluster-
ing procedure should be controllable and comprehensible for end-users.
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E-mail addresses: hly4ml@gmail.com (L. Hu), zyhe@dlut.edu.cn (Z. He).

(2) Post-modeling (explainability), which entails providing rational
explanations for clustering outcomes, regardless of the algorithm’s in-
herent opacity. In terms of specific interpretable models, decision trees
are widely adopted [6–8], with a particular focus on binary trees [9–
11]. However, most of these methods are designed for numerical data,
and to our knowledge, only the clustering method in [10] is specifically
tailored for categorical data.

The algorithm in [10] follows a three-step process: growing, prun-
ing, and joining, extending the CUBT framework [9] to derive the final
decision tree. It employs splitting criteria and dissimilarity measures
suitable for categorical variables, with each leaf node corresponding to
a specific cluster. Despite of its success on providing an interpretable
clustering result in terms of a decision tree, the tree construction
procedure in [10] involves multiple parameters, and the decision to
further split a node lacks a clear statistical interpretation.

This paper introduces an interpretable clustering algorithm for cat-
egorical data based on hypothesis testing. The primary motivations for
developing this method are as follows. First, the interpretability of ex-
isting categorical data clustering algorithms is inadequate, potentially
leading to clustering results that do not fulfill the requisite trustworthi-
ness in high-stakes applications. Second, while the algorithm in [10]
employs the decision tree as an interpretable model, it still lacks the
https://doi.org/10.1016/j.patcog.2025.111364
Received 13 March 2024; Received in revised form 5 August 2024; Accepted 12 Ja
vailable online 19 January 2025 
031-3203/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
nuary 2025

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
https://orcid.org/0000-0001-7470-9395
https://orcid.org/0000-0001-9474-8375
https://orcid.org/0000-0001-8267-9181
mailto:hly4ml@gmail.com
mailto:zyhe@dlut.edu.cn
https://doi.org/10.1016/j.patcog.2025.111364
https://doi.org/10.1016/j.patcog.2025.111364
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2025.111364&domain=pdf


L. Hu et al.

s
t
n

t
m

a
c

d

c
u

s

t
i
m

t
c
i
c

b
M
o

t

d
n
s
𝐷
t

Pattern Recognition 162 (2025) 111364 
interpretability on the tree growing process, i.e., why samples in a leaf
node should be further divided into two clusters. Finally, all current
decision tree-based interpretable clustering algorithms, whether for
numeric or categorical data, do not assess each cluster and guide the
tree construction from a significance testing perspective.

To our knowledge, there is still a lack of research efforts that
tackle the interpretable categorical data clustering issue from a signifi-
cance testing aspect. Meanwhile, in response to the challenges posed
by existing methods, we propose SigTree, a clustering approach for
categorical data that offers stronger interpretability with respect to
both the tree construction process and output clusters. This method
conducts the clustering process by directly building a binary decision
tree. For each node of the tree, the candidate splits are treated as binary
variables, where the outcome of each binary split is defined based on
whether samples at this node contain a specific category of a target
attribute. Concurrently, excluding the aforementioned target attribute,
other remaining attributes are considered as pseudo-class variables,
leading to multiple pseudo-class variables corresponding to different
attributes.

Under the null hypothesis of no association between a candidate
split and each pseudo-class variable, chi-squared tests are used for
association testing. If the samples at the current node do not exhibit
a significant clustering structure, then all candidate splits will show
no association with most pseudo-class variables. Hence, during the tree
growing process, the optimal split for the current node is selected, and
its 𝑝-value is calculated via the combination of multiple chi-squared test
tatistics. If this 𝑝-value is less than a predetermined significance level,
he samples at the current node are divided into two subsequent child
odes (clusters). The growth of the decision tree stops when all leaf

nodes cannot produce any further statistically significant divisions.
In summary, the main contributions of this work are as follows:

• This is the first study to incorporate hypothesis testing into the
interpretable categorical data clustering issue.

• This method ensures that each node split in the binary deci-
sion tree is both controllable and statistically reliable, and the
decision-making process is comprehensible based on the selected
categories.

• Extensive experiments on real data sets demonstrate that this
approach achieves better performance compared to the de facto
standard 𝑘-modes method, without the need to specify the num-
ber of clusters, and also maintains competitive performance rela-
tive to other interpretable clustering methods.

The structure of this paper is outlined as follows: Section 2 reviews
methods most relevant to our study. Section 3 provides a detailed ex-
planation of our proposed method. Section 4 displays our experimental
results. Finally, Section 5 offers a summary of the paper.

2. Related work

To set the context for our work on developing an interpretable
clustering method for categorical data, this section introduces relevant
algorithms in categorical data clustering and concentrates on the most
commonly used interpretable clustering methods.

2.1. Categorical data clustering

In categorical data clustering, algorithms typically consist of two
essential components: an objective function and the corresponding
search process to optimize this function. With a specific objective func-
ion in place, search processes generally proceed either in an iterative
anner, as seen in methods like 𝑘-modes [12], or in a hierarchical way,

exemplified by algorithms like the agglomerative approach ROCK [13]
nd the divisive approach DHCC [14]. The objective functions used in
ategorical data clustering can be broadly divided into two types:
 e

2 
(1) Objective function based on pairwise comparison: It requires
computing the pairwise distance between two samples. The Ham-
ming distance is extensively used for categorical data [15], and other
istance measures are thoroughly reviewed in the literature [16]. Ad-

ditionally, pairwise similarity-based representation learning methods
have recently gained considerable attention [17–19].

(2) Objective function based on a set-based measure: This type
of objective function evaluates the heterogeneity of one or more sets
of samples without using the pairwise similarity. Entropy, a classical
oncept for measuring the uncertainty of random variables, is widely
tilized in categorical data clustering [20,21]. It is naturally suited for

assessing the compactness of a single cluster [22] or for measuring the
imilarity between clusters [23].

However, current categorical data clustering methods seldom in-
egrate hypothesis testing or lack a focus on enhancing algorithm’s
nterpretability. From the viewpoint of hypothesis testing, the DV
ethod [24] sequentially extracts statistically significant clusters. In

terms of interpretability, only the algorithm in [10] is available in
the literature, which constructs a binary decision tree to yield an
interpretable clustering result.

2.2. Interpretable clustering

Many works have concentrated on clarifying the process of cluster-
ing, emphasizing the use of simple and explicit rules for easy expla-
nation. Accompanying this trend [25], explainable clustering methods
have attracted substantial interest (particularly explainable 𝑘-means
clustering [8,11,26]), due to the requirement on an interpretable clus-
ering model in various real life applications [7]. In addition to the
ommonly used binary decision trees for describing how each cluster
s formed, other initiatives in this direction have included, but are not
onfined to, the use of logical formulas [27], hyper-rectangles [28],

hypercubes [29] and polytopes [30] for illustrating the generation of
clusters.

Our work is focused on constructing unsupervised decision trees [6,
9,10], where pseudo-class labels used for tree construction are directly
derived from the attribute values. This method markedly contrasts
with those algorithms in [5,7,8,11,26], where decision trees are built
ased on cluster assignments generated by other clustering algorithms.
oreover, in contrast to those methods based on a joint optimization

f both tree construction and cluster formation [7,31], our method
is simple and quick since the clustering procedure is quite similar to
standard decision tree construction method.

In comparison to the interpretable categorical data clustering
method in [10], our approach employs a hypothesis testing procedure
to select optimal splits. As a result, the tree construction process in our
method is also interpretable since a node will be further divided only
he split is statistically significant in terms of 𝑝-values.

3. Methods

3.1. Preliminaries

Given a categorical data set  = {𝑥1,… , 𝑥𝑁} consisting of 𝑁
samples and 𝑀 attributes, the feature value 𝑥𝑖𝑚 of the 𝑖th sample on
the 𝑚th attribute is one of the 𝑄𝑚 categories in the set {𝐴(𝑚)

1 ,… , 𝐴(𝑚)
𝑄𝑚

}.
The goal of interpretable categorical data clustering is to divide 
into clusters (subsets) { (1),… , (𝐾)}, where each cluster  (𝑘) can be
described via simple rules.

In the context of binary decision trees, each non-leaf node 𝐷 is
ivided into two child nodes: a left child node 𝐷𝐿𝑒𝑓 𝑡 and a right child
ode 𝐷𝑅𝑖𝑔 ℎ𝑡. Each category 𝐴(𝑚)

𝑞 can be employed as the candidate
plitting point, where samples in the node 𝐷 are allocated to 𝐷𝐿𝑒𝑓 𝑡 or
𝑅𝑖𝑔 ℎ𝑡 according to whether their corresponding feature values equal

o 𝐴(𝑚)
𝑞 or not. Hence, we can define a binary random variable  (𝑚)

𝑞 for
ach candidate split:  (𝑚) = 1 if 𝑥 = 𝐴(𝑚) and  (𝑚) = 0 otherwise.
𝑞 𝑖𝑚 𝑞 𝑞
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Similarly, for the 𝑚th attribute, we can define a random variable 𝑚
hat takes values in the set {𝐴(𝑚)

1 ,… , 𝐴(𝑚)
𝑄𝑚

}.
To construct the interpretable clustering tree, we employ a category-

based decision rule to split each non-leaf node. This requires computing
the 𝑝-value for each candidate split variable  (𝑚′)

𝑞 against the other
− 1 attribute variables, denoted as 𝑝𝑣𝑎𝑙( (𝑚′)

𝑞 ,′), where ′ = {𝑚|1 ≤
𝑚 ≤ 𝑀 , 𝑚! = 𝑚′}. The candidate split  (𝑚∗)

𝑞∗ that can yield the smallest
𝑝-value will be chosen to divide the node into two child nodes.

Algorithm 1: SigTree
Input :  – categorical data set

𝛼∗ – significance level

Output: An unsupervised decision tree D

1 D ← BinaryTree( , 𝛼∗)

2 Function BinaryTree( , 𝛼∗):
3 D ← create node (samples =  , pval = Null, cat = Null,

Left = Null, Right = Null)

4 if || ≤ 5 then

5 return D

6 𝑝𝑣𝑎𝑙∗, (𝑚∗)
𝑞∗ ← OptimalSplit()

7 if 𝑝𝑣𝑎𝑙∗ > 𝛼∗ then
8 return D

9 𝐿𝑒𝑓 𝑡,𝑅𝑖𝑔 ℎ𝑡 ← ( (𝑚∗)
𝑞∗ )

0 if |𝐿𝑒𝑓 𝑡| ≥ 3 and |𝑅𝑖𝑔 ℎ𝑡| ≥ 3 then

11 D.pval ← 𝑝𝑣𝑎𝑙∗

// Save the category indexed by the keys

12 D.cat ← 𝐴(𝑚∗)
𝑞∗

// Apply BinaryTree to the child nodes

13 D.Left ← BinaryTree(𝐿𝑒𝑓 𝑡, 𝛼∗)
14 D.Right ← BinaryTree(𝑅𝑖𝑔 ℎ𝑡, 𝛼∗)

5 return D

6 Function OptimalSplit():

// Splitting criteria

7 foreach 𝑚′ ∈ [1,… , 𝑀], 𝑞 ∈ [1,… , 𝑄𝑚] do

18  (𝑚∗)
𝑞∗ ← ar g min

𝑚′!=𝑚,𝑞
𝑝𝑣𝑎𝑙( (𝑚′)

𝑞 ,′)

9 return 𝑝𝑣𝑎𝑙∗, (𝑚∗)
𝑞∗

3.2. The SigTree algorithm

Based on the concepts and symbols introduced in Section 3.1, we
will present the SigTree algorithm. Given any categorical data set as
input, SigTree() produces an unsupervised decision tree 𝐷. This tree
delineates the clustering process: its leaf nodes represent the final
clusters, and each non-leaf node specifies the decision rule for splitting.

he comprehensive procedure of the SigTree algorithm is presented in
lgorithm 1.

To store the necessary information for tree construction
BinaryTree), each non-leaf node in the SigTree algorithm includes
ive essential components (as outlined in Line 3): ‘samples’, ‘pval’, ‘cat’,
 H

3 
‘Left’, and ‘Right’. These components respectively store the samples
ontained in the current node, the 𝑝-value of the optimal split, the

corresponding optimal decision category, and the samples in the sub-
sequent left and right child nodes that either contain or do not contain
he optimal category. As leaf nodes cannot be further divided, they only
etain the ‘samples’ component.

The tree growth procedure in SigTree is mainly determined by
wo criteria: the splitting criteria (OptimalSplit outlined in Lines

17∼19), and the stopping criteria. The detailed explanation of splitting
criteria will be provided in Section 3.3. As for the stopping criteria,

e will clarify them here. We employ two types of stopping criteria:
ne is the significance-based stopping criteria (Line 7), which we have

proposed and detailed in Section 3.4, and the other is the trivial
stopping criteria, akin to those used in conventional decision trees.

Our trivial stopping criteria requires that each leaf node in the
SigTree algorithm forms a cluster with at least three samples. This is
achieved through two operations: First, we avoid splitting nodes with
no more than five samples (Line 4). Second, we preclude the split
hat would lead to the generation of a child node with less than three

samples (Line 10).

3.3. Splitting criteria

3.3.1. Split testing issue
To determine the statistical significance of each candidate split, we

tackle this issue from the viewpoint of multiple hypothesis testing.
For a candidate split variable based on the 𝑞th category of the 𝑚′-th
attribute, we have 𝑀 − 1 pseudo-class variables corresponding to the
remaining attributes, i.e., 𝑚 in which 𝑚! = 𝑚′. Hence, we need to
handle 𝑀 − 1 association testing issues. The null hypothesis 𝐻0𝑚 posits
that  (𝑚′)

𝑞 is independent of the 𝑚th attribute 𝑚, while the alternative
hypothesis 𝐻1𝑚 claims the presence of an association. The collective
null hypothesis, which encompasses all 𝑀 − 1 individual hypotheses, is
expressed as:

𝐻0 ∶
⋂

𝑚!=𝑚′
𝐻0𝑚,

and this is contrasted against the global alternative hypothesis:

𝐻1 ∶
⋃

𝑚!=𝑚′
𝐻1𝑚, (1)

where the global alternative hypothesis implies that at least one 𝐻0𝑚 is
alse. In our context, the global alternative hypothesis 𝐻1 suggests that
he candidate split is associated with at least one attribute. Associations
cross multiple attributes can cumulatively strengthen the conclusion
hat the candidate split is significant.

Under each null hypothesis 𝐻0𝑚, we utilize the chi-squared test for
association testing. Then, we combine the test statistics from all indi-
idual chi-squared tests to derive the overall 𝑝-value, i.e., 𝑝𝑣𝑎𝑙( (𝑚′)

𝑞 ,′).
his 𝑝-value assesses the statistical significance against the global null

hypothesis 𝐻0, with a smaller value indicating a more significant split.
Thus, the optimal split for each node is identified by the smallest
𝑝-value.

3.3.2. Chi-squared test
Note that the classic CHAID method [32] has employed the chi-

squared test as the split criteria for growing a decision tree, our
pproach exhibits several distinct aspects: (1) We utilize binary splits
n tree construction, more apt for interpretable clustering, in contrast

to the multi-way splits in CHAID. (2) The chi-squared test in the
HAID algorithm is applied in a supervised setting. That is, the true
lass variable is given in the training stage. However, in our problem,
he true class label information is missing and the chi-squared test is
onducted in an unsupervised manner.

In our application of the chi-squared test as the splitting criteria,
e begin by calculating a chi-squared statistic for each pair ⟨ (𝑚′)

𝑞 ,𝑚⟩.
ere, the categorical variable  consists of 𝑄 categories {𝐴(𝑚),… ,
𝑚 𝑚 1
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𝐴(𝑚)
𝑄𝑚

}. We then construct a 2 × 𝑄𝑚 contingency table to represent the
observed co-occurrence frequencies as shown below:

𝐴(𝑚)
1 … 𝐴(𝑚)

𝑄𝑚
Total

 (𝑚′)
𝑞 = 1 𝑁 (𝑚′ ,𝑞 ,𝑚)

11 𝑁 (𝑚′ ,𝑞 ,𝑚)
1𝑗 𝑁 (𝑚′ ,𝑞 ,𝑚)

1𝑄𝑚
𝑁 (𝑚′ ,𝑞 ,𝑚)

1⋅

 (𝑚′)
𝑞 = 0 𝑁 (𝑚′ ,𝑞 ,𝑚)

01 𝑁 (𝑚′ ,𝑞 ,𝑚)
0𝑗 𝑁 (𝑚′ ,𝑞 ,𝑚)

0𝑄𝑚
𝑁 (𝑚′ ,𝑞 ,𝑚)

0⋅

Total 𝑁 (𝑚′ ,𝑞 ,𝑚)
⋅1 𝑁 (𝑚′ ,𝑞 ,𝑚)

⋅𝑗 𝑁 (𝑚′ ,𝑞 ,𝑚)
⋅𝑄𝑚

𝑁 (𝑚′ ,𝑞 ,𝑚)

. (2)

Following the above contingency table, the expected frequencies are
alculated as:

𝐸(𝑚′ ,𝑞 ,𝑚)
𝑠𝑗 =

𝑁 (𝑚′ ,𝑞 ,𝑚)
𝑠⋅ ⋅𝑁 (𝑚′ ,𝑞 ,𝑚)

⋅𝑗

𝑁 (𝑚′ ,𝑞 ,𝑚) . (3)

For each pair ⟨ (𝑚′)
𝑞 ,𝑚⟩, we compute the chi-squared statistic:

𝜒2( (𝑚′)
𝑞 ,𝑚) =

1
∑

𝑠=0

𝑄𝑚
∑

𝑗=1

(𝑁 (𝑚′ ,𝑞 ,𝑚)
𝑠𝑗 − 𝐸(𝑚′ ,𝑞 ,𝑚)

𝑠𝑗 )2

𝐸(𝑚′ ,𝑞 ,𝑚)
𝑠𝑗

. (4)

These individual chi-squared statistics are summed to yield a collec-
ive test statistic for the global null hypothesis 𝐻0:

𝜒2( (𝑚′)
𝑞 ) =

∑

𝑚!=𝑚′
𝜒2( (𝑚′)

𝑞 ,𝑚) . (5)

The corresponding degrees of freedom are calculated as:

𝑑 𝑓 ( (𝑚′)
𝑞 ) =

∑

𝑚!=𝑚′
𝑄𝑚 . (6)

Finally, the analytical 𝑝-value, i.e., 𝑝𝑣𝑎𝑙( (𝑚′)
𝑞 ,′), is derived from

the collective chi-squared statistic, utilizing the chi-squared cumulative
distribution function with the calculated degrees of freedom under the
assumption of independence [1] across all 𝐻0𝑚 studies.

In addition, when assessing splits involving attributes that have only
two categories (𝑄𝑚 = 2), i.e., in cases of 2 × 2 contingency tables,
special attention is required to avoid overestimating the chi-squared
value. In such scenarios, the Yates’s correction is employed if any
expected frequency 𝐸(𝑚′ ,𝑞 ,𝑚)

𝑠𝑗 in the 2 × 2 contingency table falls below
5. The chi-squared statistic in Eq. (4) is adjusted accordingly:

𝜒2( (𝑚′)
𝑞 ,𝑚) =

1
∑

𝑠=0

2
∑

𝑗=1

(|𝑁 (𝑚′ ,𝑞 ,𝑚)
𝑠𝑗 − 𝐸(𝑚′ ,𝑞 ,𝑚)

𝑠𝑗 | − 0.5)2

𝐸(𝑚′ ,𝑞 ,𝑚)
𝑠𝑗

. (7)

3.4. Significance-based stopping criteria

Developing effective stopping criteria is crucial to ensure that the
tree growth procedure neither underfits nor overfits the data. Our
algorithm tackles this challenge through hypothesis testing by compar-
ng the optimal split 𝑝-value against the significance level threshold
𝛼∗ in Line 7). This stopping criterion notably differs from trivial
r conventional criteria, which typically rely on heuristic rules. The
reatment of node splitting issue as a significance testing problem offers

a statistically rigorous way to govern the splitting process.
Specifically, the selection of an optimal split involves comparisons

mong all candidate splits, and 𝛼∗ is determined using a multiple-
omparison correction method. We employ the Bonferroni correc-
ion [33] to control the Family-Wise Error Rate (FWER) for the optimal
plit. Nodes that produce an optimal split with 𝑝𝑣𝑎𝑙∗ less than or equal
o 𝛼∗ are considered for subdivision. Since the number of comparisons
or splits may vary for each node, we apply the constant || uniformly

across all nodes to ensure stringent control. || represents the total
umber of categories across all attributes in the categorical data set.
he adjusted significance level 𝛼∗ is thus calculated as:

𝛼∗ = 𝛼
||

, (8)

where 𝛼 is the standard significance level parameter (typically 0.01 or
.05) in single hypothesis testing.
4 
3.5. Time complexity analysis

Here we provide an analysis on the average-case time complexity
f the SigTree algorithm. Let 𝑇𝑁 denotes the average number of basic

operations required by SigTree to finish the clustering process over 𝑁
categorical samples. When the sample size is 5 or fewer, only one basic
operation (Line 4) is required:

𝑇𝑁 = 1, if 𝑁 ≤ 5 . (9)

The calculation of 𝑇𝑁 involves two parts. The first part,
𝚙𝚝𝚒𝚖𝚊𝚕𝚂𝚙𝚕𝚒𝚝𝑁 , corresponds to the cost required for assessing all

candidate splits to find the optimal one. The second part, accounts
for the average cost of recursively calling SigTree on two child nodes.

nder the assumption that the number of samples in the left child node
s equally likely to be any number ℎ (1 ≤ ℎ ≤ 𝑁 − 1), we have:

𝑇𝑁 = 𝙾𝚙𝚝𝚒𝚖𝚊𝚕𝚂𝚙𝚕𝚒𝚝𝑁 + 2
𝑁 − 1

𝑁−1
∑

ℎ=1
𝑇ℎ, (10)

where the summation term accounts for the average number of basic
operations across all 𝑁 − 1 potential split scenarios.

𝙾𝚙𝚝𝚒𝚖𝚊𝚕𝚂𝚙𝚕𝚒𝚝𝑁 is mainly the cost of scanning the data set to collect
the cell frequencies of contingency tables. Each candidate split  (𝑚′)

𝑞
(where 𝑞 ranges from 1 to 𝑄𝑚′ ) constructs a 2 × 𝑄𝑚 contingency table
with the 𝑚th attribute, and the 𝑄𝑚′ possible splits lead to 2𝑄𝑚′𝑄𝑚 cells.
Therefore, when it is aggregated across all attributes, 𝙾𝚙𝚝𝚒𝚖𝚊𝚕𝚂𝚙𝚕𝚒𝚝𝑁
can be calculated as follows:

𝙾𝚙𝚝𝚒𝚖𝚊𝚕𝚂𝚙𝚕𝚒𝚝𝑁 = 𝑁 ⋅ 2
𝑀
∑

𝑚′=1

∑

𝑚!=𝑚′
𝑄𝑚′𝑄𝑚

= 𝑁 ⋅ 𝑌 ,
(11)

where 𝑌 = 2
∑𝑀

𝑚′=1
∑

𝑚!=𝑚′ 𝑄𝑚′𝑄𝑚 is a fixed constant for a given
categorical data set.

Then, we can simplify the recursive relation in Eq. (10) as follows:

𝑇𝑁 = 𝑁 𝑌 + 2
𝑁 − 1

𝑁−1
∑

ℎ=1
𝑇ℎ, for 𝑁 > 1 .

To multiply both sides by 𝑁 − 1, we obtain

(𝑁 − 1)𝑇𝑁 = (𝑁 − 1)𝑁 𝑌 + 2
𝑁−1
∑

ℎ=1
𝑇ℎ, for 𝑁 > 1 . (12)

If we replace 𝑁 by 𝑁 − 1, then we have

(𝑁 − 2)𝑇𝑁−1 = (𝑁 − 2)(𝑁 − 1)𝑌 + 2
𝑁−2
∑

ℎ=1
𝑇ℎ, for 𝑁 > 2 . (13)

Now, we subtract Eq. (13) from Eq. (12) to derive the following
recurrence relation:

𝑁 𝑇𝑁 = (𝑁 + 1)𝑇𝑁−1 + 2𝑁 𝑌 , for 𝑁 > 1 . (14)

Theorem 1. 𝑇𝑁 = 2𝑌 (𝑁 + 1)𝑁 − 2𝑌 𝑁 where 𝑁 = 1 + 1
2 +⋯ + 1

𝑁 is
a Harmonic number.

Proof. To multiply both sides of Eq. (14) by 1
𝑁(𝑁+1) , we obtain

𝑇𝑁
𝑁 + 1 =

𝑇𝑁−1
𝑁

+ 2𝑌
𝑁 + 1 .

If we let 𝑆𝑁 = 𝑇𝑁
𝑁+1 , then we have

𝑆𝑁 = 𝑆𝑁−1 +
2𝑌

𝑁 + 1 .

By unfolding the above recurrence, we can obtain the following equa-
tion:

𝑆𝑁 = 2𝑌
𝑁
∑ 1 . (15)

ℎ=1 ℎ + 1
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Now, we express and rewrite ∑𝑁
ℎ=1

1
ℎ+1 as follows:

𝑁
∑

ℎ=1

1
ℎ + 1 =

∑

1≤ℎ≤𝑁

1
ℎ + 1 =

∑

1≤ℎ−1≤𝑁

1
ℎ

=
∑

2≤ℎ≤𝑁+1

1
ℎ

=
(

∑

1≤ℎ≤𝑁

1
ℎ
)

− 1
1
+ 1

𝑁 + 1

= 𝑁 − 𝑁
𝑁 + 1 .

(16)

Therefore, we have

𝑇𝑁 = (𝑁 + 1)𝑆𝑁 = 2𝑌 (𝑁 + 1)(𝑁 − 𝑁
𝑁 + 1 )

= 2𝑌 (𝑁 + 1)𝑁 − 2𝑌 𝑁 .
□ (17)

Finally, the average-case time complexity of SigTree with 𝑁 samples
as input is (𝑇𝑁 ) = (2𝑌 (𝑁 + 1)𝑁 − 2𝑌 𝑁) = (2𝑌 (𝑁 + 1)𝑁 ) =
(2𝑌 (𝑁 + 1)𝑁 ) = (𝑌 𝑁𝑁 ). Since 𝑁 < 1 + ln𝑁 , the final time
complexity of SigTree in the average-case is (𝑌 𝑁 ln𝑁).

4. Results

In this section, we conduct a thorough evaluation of our SigTree
algorithm on eighteen real-world categorical data sets, focusing on both
lustering quality (Section 4.3) and explainability (Section 4.4).

4.1. Comparison methods and parameter settings

The primary goal of our experiments is to empirically demonstrate
the superiority of SigTree over two counterpart clustering methods that
espectively utilize hypothesis testing and unsupervised decision trees,
amely DV [24] and the extended CUBT algorithms [10].

In a more broader context, SigTree is compared with both classic
algorithms [12,20] and state-of-the-art (SOTA) methods [17,19] in
categorical data clustering. Recognizing that most current interpretable
clustering algorithms, especially explainable 𝑘-means methods, are tai-
lored for numerical data, we apply one-hot encoding to convert each
categorical sample into a numerical representation. On the transformed
numeric data, the clustering results of leading explainable 𝑘-means
methods [8,11,26] can be obtained to make a comparison with SigTree.

The brief descriptions and parameter settings of competing algo-
rithms in the performance comparison are summarized as follows:

• DV [24]: This algorithm produces consistent clustering result in
each run. It automatically determines the number of clusters
through the iterative extraction of statistically significant clusters
one by one.

• CUBT [10]: It offers two variants for categorical data: CUBTHam

and CUBTMI. Both variants follow the same joining process, build-
ing upon the same maximal growth tree, denoted as CUBTmax.
They differ in the measure used in the pruning stage: the former
uses Hamming distance and the latter employs mutual informa-
tion. We use the default parameters as provided in the origi-
nal code by the authors.1 These parameters are set as follows:
the maximum tree depth lp=7, the minimal size of each leaf
node minsize=10 and the minimal size of each non-leaf node
minsplit=20.

• Classic categorical data clustering methods: the 𝑘-modes method
[12] and the entropy-based method [20]. In 𝑘-modes, 𝐾 samples
are randomly chosen from the data set to serve as the initial
modes. The entropy-based method employs a Monte Carlo search
procedure, to derive locally optimal 𝐾 clusters, starting with all
samples initially placed in a single cluster. Hence, we may obtain
different clustering results in different runs of these two methods.

1 https://www.i2~m.univ-amu.fr/perso/badih.ghattas/cubt.php
5 
Table 1
The properties of 18 UCI categorical data sets.

Data set Abbr. 𝑁 𝑀 || 𝐾

Lenses Ls 24 4 9 3
Lung Cancer Lc 32 56 159 3
Soybean (Small) So 47 21 58 4
Zoo Zo 101 16 36 7
Promoter Sequences Ps 106 57 228 2
Hayes-Roth Hr 132 4 15 3
Lymphography Ly 148 18 59 4
Heart Disease Hd 303 13 57 5
Solar Flare Sf 323 9 25 6
Primary Tumor Pt 339 17 42 21
Dermatology De 366 33 129 6
House Votes Hv 435 16 48 2
Balance Scale Bs 625 4 20 3
Credit Approval Ca 690 9 45 2
Breast Cancer Bc 699 9 90 2
Mammographic Mass Mm 824 4 18 2
Tic-Tac-Toe Tt 958 9 27 2
Car Evaluation Ce 1728 6 21 4

• SOTA categorical data clustering methods: We include two re-
cently proposed methods in the comparison: CDE [19] and CD-
CDR [17]. For CDE, the default parameters in [19] were used. For
CDCDR, we selected non-default options that demonstrated supe-
rior performance in the experiment of [17]: Spectral Embedding
is used as the ‘Graph Embedding Method’ and the joint operation
is chosen as the ‘Integration Operation’.

• SOTA explainable 𝑘-means methods: These methods approximate
𝑘-means clustering by constructing top-down binary decision
trees with 𝐾 leaves. They utilize axis-aligned cuts of reference
centers, each employing a unique strategy: Iterative Mistake
Minimization (IMM)2 [11], Random Threshold (RDM) [26], and
ExShallow (SHA)3 [8].

The SigTree algorithm, along with the code for generating all exper-
mental results, is available at: https://github.com/hulianyu/SigTree.

In a specific scenario of the SigTree algorithm, if the 𝑝𝑣𝑎𝑙∗ of the best
andidate split at the root node exceeds 𝛼∗ (as outlined in Line 7),
he algorithm is compelled to retain this initial optimal split, thereby
inalizing two clusters. In our performance comparison, for each algo-
ithm that cannot output consistent clustering result in each run (except

for SigTree, DV, and CUBT), 50 independent runs are conducted on
each data set to report the average results. The number of clusters
𝐾 for these algorithms is specified to be the ground-truth cluster
number of each data set. All experiments are conducted on an Intel
i7-10700F@2.90 GHz personal computer with 16G RAM.

4.2. Data sets and performance metrics

Table 1 presents the properties of 18 real-world categorical data
sets. The notations used here are consistent with those in the previous
sections. These data sets, characterized by categorical features,4 have
been downloaded from the UCI Machine Learning Repository [34].

For evaluating clustering quality, we employ two widely-used exter-
al validation metrics [35]: Purity and F-score. These metrics evaluate

the clustering results by comparing the set of predicted clusters 𝜋 =
𝜋1,… , 𝜋𝐾̂} with the set of ground-truth clusters 𝜋∗ = {𝜋∗

1 ,… , 𝜋∗
𝐾}.

igher values of these metrics indicate better clustering quality.
The Purity is defined as follows:

Purity = 1
𝑁

𝐾̂
∑

𝑘=1
max

𝑘′∈{1,…,𝐾}
|𝜋𝑘 ∩ 𝜋∗

𝑘′ |, (18)

2 https://github.com/navefr/ExKMC
3 https://github.com/lmurtinho/ShallowTree
4 https://archive.ics.uci.edu/datasets?FeatureTypes=Categorical

https://www.i2~m.univ-amu.fr/perso/badih.ghattas/cubt.php
https://github.com/hulianyu/SigTree
https://github.com/navefr/ExKMC
https://github.com/lmurtinho/ShallowTree
https://archive.ics.uci.edu/datasets?FeatureTypes=Categorical
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Table 2
The clustering quality comparison in terms of Purity and F-score for all competing algorithms. When DV fails to identify any statistically significant clusters on one data set, its
clustering outcome is represented as ‘—’.

Metric Data set SigTree DV CUBTHam CUBTMI 𝑘-modes Entropy CDE CDCDR IMM RDM SHA

Purity

Ls 0.625 — 0.625 0.625 0.682 0.686 0.648 0.625 0.643 0.703 0.666
Lc 0.531 — 0.500 0.500 0.533 0.611 0.549 0.561 0.523 0.499 0.591
So 1 1 0.574 0.787 0.882 0.914 0.935 0.940 0.948 0.863 1
Zo 0.871 0.950 0.733 0.832 0.831 0.876 0.872 0.871 0.888 0.810 0.917
Ps 0.811 — 0.802 0.802 0.554 0.750 0.737 0.751 0.682 0.647 0.786
Hr 0.485 — 0.500 0.500 0.412 0.443 0.481 0.423 0.475 0.498 0.485
Ly 0.554 0.791 0.662 0.757 0.623 0.756 0.742 0.730 0.706 0.656 0.733
Hd 0.568 0.657 0.571 0.541 0.588 0.597 0.600 0.587 0.564 0.559 0.562
Sf 0.728 — 0.533 0.687 0.544 0.550 0.536 0.577 0.518 0.492 0.526
Pt 0.395 — 0.327 0.295 0.430 0.471 0.463 0.444 0.419 0.387 0.439
De 0.842 0.497 0.790 0.650 0.715 0.792 0.841 0.816 0.841 0.673 0.887
Hv 0.917 0.892 0.926 0.894 0.866 0.870 0.855 0.857 0.848 0.822 0.848
Bs 0.590 — 0.560 0.547 0.513 0.550 0.579 0.622 0.570 0.548 0.564
Ca 0.558 — 0.726 0.726 0.748 0.644 0.650 0.632 0.721 0.571 0.561
Bc 0.931 0.951 0.924 0.924 0.919 0.964 0.966 0.973 0.883 0.838 0.883
Mm 0.826 — 0.816 0.814 0.818 0.761 0.780 0.817 0.788 0.753 0.780
Tt 0.793 — 0.678 0.678 0.653 0.653 0.653 0.653 0.653 0.653 0.653
Ce 0.700 — 0.700 0.700 0.701 0.704 0.702 0.700 0.708 0.749 0.711

Mean 0.707 — 0.664 0.681 0.667 0.700 0.700 0.699 0.688 0.651 0.700
Average Rank 4.5 — 5.86 5.86 6.17 4.5 4.67 4.97 5.83 7.67 4.97

F-score

Ls 0.498 — 0.443 0.443 0.478 0.460 0.400 0.332 0.391 0.482 0.461
Lc 0.497 — 0.471 0.471 0.436 0.486 0.436 0.470 0.411 0.396 0.467
So 1 1 0.667 0.844 0.826 0.877 0.913 0.928 0.919 0.787 1
Zo 0.887 0.964 0.793 0.916 0.705 0.705 0.765 0.790 0.772 0.630 0.796
Ps 0.530 — 0.593 0.593 0.506 0.669 0.634 0.641 0.609 0.593 0.665
Hr 0.375 — 0.330 0.350 0.353 0.369 0.422 0.348 0.368 0.386 0.375
Ly 0.651 0.268 0.379 0.537 0.397 0.471 0.456 0.505 0.430 0.441 0.432
Hd 0.400 0.132 0.507 0.297 0.393 0.368 0.390 0.412 0.363 0.384 0.348
Sf 0.637 — 0.380 0.453 0.386 0.381 0.397 0.420 0.367 0.350 0.358
Pt 0.319 — 0.167 0.173 0.186 0.182 0.195 0.179 0.204 0.170 0.169
De 0.844 0.443 0.790 0.526 0.606 0.677 0.751 0.730 0.733 0.569 0.819
Hv 0.512 0.685 0.749 0.658 0.773 0.779 0.774 0.778 0.748 0.730 0.748
Bs 0.557 — 0.245 0.266 0.410 0.425 0.466 0.450 0.458 0.451 0.455
Ca 0.668 — 0.396 0.315 0.642 0.596 0.606 0.678 0.664 0.572 0.565
Bc 0.747 0.817 0.798 0.786 0.871 0.936 0.940 0.952 0.803 0.767 0.803
Mm 0.609 — 0.323 0.479 0.703 0.666 0.696 0.702 0.669 0.655 0.665
Tt 0.155 — 0.297 0.382 0.538 0.562 0.544 0.535 0.538 0.546 0.543
Ce 0.552 — 0.475 0.220 0.408 0.387 0.393 0.379 0.398 0.498 0.400

Mean 0.580 — 0.489 0.484 0.534 0.555 0.565 0.568 0.547 0.523 0.559
Average Rank 3.75 — 6.92 7.03 5.83 4.83 4.39 4.61 5.72 6.67 5.25
s

where |𝜋𝑘 ∩ 𝜋∗
𝑘′ | denotes the number of samples in both 𝜋𝑘 and 𝜋∗

𝑘′ .
The F-score is defined as follows:

F-score = 2 ⋅ 𝑇 𝑃
2 ⋅ 𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 , (19)

where TP (True Positive) is the number of sample pairs with the same
abel in 𝜋∗ that are assigned to the same cluster in 𝜋, FP (False Positive)

is the number of sample pairs with different labels in 𝜋∗ that are
assigned to the same cluster in 𝜋, and FN (False Negative) is the number
of sample pairs with the same label in 𝜋∗ that are assigned to different
clusters in 𝜋.

For evaluating the explainability of clustering results in terms of
decision trees, we use three classic structural metrics [8]: the number of
eaf nodes (nLeaf) [25], the maximal depth of the tree (maxDepth) [36],

and the average depth of the leaf nodes (avgDepth) [37]. These metrics
quantify the complexity of the rules used to form the clusters, with
each cluster corresponding to a leaf node. Lower values of these metrics
indicate better explainability, as they correspond to more intuitive and
concise tree structures.

4.3. Performance comparison on clustering quality

The results of clustering quality comparison, based on two metrics,
re displayed in Table 2. To evaluate the overall clustering quality
6 
of each algorithm, we calculate the Mean and Average Rank for each
metric across all data sets. The best clustering results are highlighted
in boldface. The execution times for producing these results, recorded
in seconds, are listed in Table 3. An analysis of Tables 2 and 3 reveals
everal key observations, which are detailed in the subsections below:

4.3.1. Overall performance
SigTree achieves the best overall performance in terms of two ex-

ternal metrics, while maintaining acceptable execution times compared
to a range of algorithms. This indicates that our testing-based splitting
criteria is effective in the unsupervised tree growth process so as to
form meaningful categorical clusters. Specifically, SigTree outperforms
other algorithms on 5 data sets in terms of Purity and 9 data sets with
respect to F-score (Ls, Lc, So, Ly, Sf, Pt, De, Bs, Ce). Compared to the
widely-used 𝑘-modes algorithm, SigTree shows an overall improvement
of approximately 6% in Purity and 8.6% in F-score, while maintaining
comparable runtime. Furthermore, SigTree demonstrates significantly
superior performance in terms of F-score compared to three competing
algorithms, while the second-best and worst-performing methods with
respect to this metric do not exhibit significant difference, as evidenced
in the Critical Difference (CD) plot shown in Fig. 1(b).
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Table 3
Running time comparison of different clustering algorithms. Through a one-sided Wilcoxon signed-rank test across all data sets at the 95% confidence interval, algorithms significantly
lower than SigTree are marked in red, and those significantly faster than SigTree are marked in blue. The last row shows total running time of each algorithm.
Data set SigTree DV CUBTHam CUBTMI 𝑘-modes Entropy CDE CDCDR IMM RDM SHA

Ls 0.003 0.038 0.640 0.680 0.004 0.012 0.019 0.006 0.002 0.015 0.017
Lc 0.502 1.944 1.580 1.600 0.058 0.112 0.439 0.015 0.004 0.032 0.033
So 0.110 1.719 1.110 1.110 0.035 0.104 0.077 0.003 0.003 0.026 0.025
Zo 0.079 2.270 1.110 1.060 0.056 0.483 0.043 0.004 0.004 0.031 0.031
Ps 2.641 38.451 26.400 26.210 0.301 0.331 0.903 0.026 0.004 0.076 0.032
Hr 0.007 0.106 1.290 1.130 0.021 0.086 0.016 0.002 0.002 0.017 0.016
Ly 0.090 25.449 8.150 7.820 0.111 0.598 0.084 0.008 0.004 0.046 0.029
Hd 0.165 149.244 14.030 14.780 0.168 1.771 0.077 0.011 0.006 0.091 0.047
Sf 0.048 0.653 3.610 2.710 0.112 1.261 0.026 0.006 0.005 0.037 0.032
Pt 0.172 15.402 5.850 5.760 0.306 10.887 0.057 0.020 0.013 0.166 0.106
De 0.972 112.967 41.060 41.530 0.571 4.523 0.344 0.028 0.010 0.219 0.079
Hv 0.343 16.208 7.250 8.250 0.270 0.483 0.082 0.012 0.004 0.060 0.025
Bs 0.011 0.588 11.750 8.130 0.123 0.481 0.018 0.005 0.005 0.060 0.030
Ca 0.049 8.608 708.100 708.180 0.331 0.400 0.062 0.011 0.005 0.063 0.028
Bc 0.380 113.818 266.440 267.960 0.338 0.487 0.154 0.013 0.006 0.127 0.035
Mm 0.015 0.122 6.220 3.950 0.175 0.324 0.016 0.006 0.003 0.026 0.024
Tt 0.174 19.597 47.090 21.080 0.570 0.573 0.050 0.015 0.006 0.092 0.033
Ce 0.025 4.504 61.470 25.510 0.660 2.923 0.033 0.024 0.008 0.156 0.049

Total 5.784 511.687 1213.150 1147.450 4.209 25.840 2.501 0.217 0.093 1.341 0.672
Fig. 1. Clustering quality comparison of SigTree and other methods was conducted using a two-tailed Bonferroni–Dunn test [38] at the 95% confidence interval. The Critical
ifference (CD) was then determined based on the number of comparisons, the corresponding critical value, and the number of data sets in the performance comparison. Algorithms
emonstrating significantly inferior performance to SigTree are marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
e

4.3.2. Comparison with DV
SigTree runs significantly faster than DV, requiring only about 1%

f the total time needed by DV across all data sets. As a categorical data
clustering algorithm that also employs hypothesis testing procedure, DV

ay refuse to report clustering results if no statistically significant clus-
ers can be identified. As shown in Table 2, DV only outputs clustering
esults on 7 data sets. Contrarily, our algorithm finds significant splits
t the root node to form at least two clusters in almost all data sets.
n cases like the data sets Ls, Bs, and Ce, where the 𝑝-value of the best
andidate split at the root node is larger than the significance level,
igTree still produces fairly good clustering results when it is forced to
ivide the data set with the initial best split. Among the 7 data sets
So, Zo, Ly, Hd, De, Hv, Bc) where DV can yield clustering results, DV
utperforms SigTree in terms of both Purity and F-score on only 2 data
ets (Zo, Bc). With respect to the automatic determination of cluster
umber, DV aligns with the ground-truth cluster number on 2 data sets
So, Zo), which is not superior to SigTree, which also correctly predicts
he cluster number on 2 data sets (So, De) from the 7 data sets, as shown
n Table 4.
7 
4.3.3. Comparison with CUBT
The CUBT variants, CUBTHam and CUBTMI, are more time-

consuming than other competitors and generally produce clusters of
significantly lower quality than SigTree, as illustrated in Fig. 1. This is
further underscored by the fact that SigTree requires only about 0.5%
of the total time taken by CUBTHam to achieve an improvement of
over 3.8% in Purity and 18.6% in F-score. Similarly, in comparison
to CUBTMI, SigTree gains more than 19.8% improvement in F-score.
Concerning the accuracy of cluster number prediction, only the CUBTMI

variant aligns with the ground-truth cluster number on one data set
(Ly), while SigTree correctly predicts the cluster number on 6 data
sets (So, Hr, Hd, Sf, De, Ca). Additionally, SigTree exhibits the smallest
average deviation from the ground-truth cluster number, as indicated
in the penultimate row of Table 4.

4.3.4. Comparison with non-interpretable clustering algorithms
In terms of both Purity and F-score, SigTree outperforms 𝑘-modes,

ntropy-based method, CDE, and CDCDR on 7, 5, 4, and 4 data sets,
respectively. In contrast, the two SOTA algorithms CDE and CDCDR
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Table 4
The cluster number prediction of various algorithms. 𝛥𝐾 represents the average prediction deviation from 𝐾. The predicted cluster number for SigTree and CUBT methods
corresponds to nLeaf, while IMM, RDM, and SHA have nLeaf = 𝐾. The last row displays the average nLeaf. CUBTMax produces a significantly larger nLeaf than other methods
(using the aforementioned Wilcoxon test).

Data set 𝐾 SigTree DV CUBTMax CUBTHam CUBTMI

Ls 3 2 — 2 2 2
Lc 3 2 — 2 2 2
So 4 4 4 3 2 3
Zo 7 6 7 4 3 4
Ps 2 4 — 5 3 3
Hr 3 3 — 9 5 4
Ly 4 2 13 8 5 4
Hd 5 5 32 19 6 6
Sf 6 6 — 18 7 7
Pt 21 6 — 22 8 6
De 6 6 2 19 4 7
Hv 2 11 5 20 6 7
Bs 3 2 — 33 13 8
Ca 2 2 — 42 6 7
Bc 2 8 8 37 6 9
Mm 2 5 — 23 12 7
Tt 2 17 — 62 14 6
Ce 4 2 — 64 8 9

𝛥 𝐾 3.222 — 17.944 4.278 3.444
Mean (nLeaf) 4.500 5.167 — 21.778 6.222 5.611
m
w
r

i
c
‘
c

outperform SigTree only on 1 and 3 data sets (Hd, Ca, Bc), respectively.
owever, our algorithm is more time-consuming than these algorithms.
his is mainly because the time complexity of SigTree is proportional to
ln𝑁 while the time complexities of these non-interpretable clustering

lgorithms are only proportional to 𝑁 .

4.3.5. Comparison with explainable 𝑘-means algorithms
SigTree generally requires more time to construct the decision

ree than these algorithms, primarily because they select optimal cuts
ased on the 𝑘-means objective function and reference means, whereas
igTree evaluates candidate splits from all possible categories. This con-
rast is most evident with IMM, the fastest one among these algorithms,
hich has a time complexity of (𝐾||𝑁 ln𝑁), with || being the
umber of features after one-hot encoding. However, SigTree exhibits
uperior performance compared to these algorithms. In particular, it
ignificantly outperforms RDM among the 10 compared algorithms, as
hown in Fig. 1. Specifically, in terms of both external metrics, SigTree

outperforms IMM, RDM, and SHA on 7, 8, and 3 data sets, respectively.
Meanwhile, the best performer among them, SHA, does not surpass
SigTree on any data set.

4.4. Performance comparison on explainability

In this subsection, we assess the explainability of the SigTree al-
orithm by comparing it with the interpretable clustering algorithms
CUBTHam, CUBTMI, IMM, RDM and SHA). The results of explainability
omparison, based on three metrics, are presented as follows: ‘nLeaf’

is shown in Table 4, while ‘maxDepth’ and ‘avgDepth’ are given in
Table 5. To facilitate a fair comparison with IMM, RDM, and SHA,
where the number of leaf nodes is predetermined by the ground-truth
cluster number 𝐾, we introduce Table 6 based on Table 5. This table
showcases the overall performance on 10 data sets where the cluster
number predicted by SigTree deviates by no more than 1 from 𝐾,
ensuring a comparison in terms of maxDepth and avgDepth based on
approximately the same nLeaf number.

In the comparison of nLeaf, we particularly examine the distinc-
ion between SigTree and CUBT algorithms, observing that they can
etermine the number of leaf nodes adaptively without using the
round-truth cluster number as input. SigTree generates an nLeaf num-
er not exceeding 𝐾 on 13 data sets. In contrast, CUBTHam and CUBTMI

an only achieve this goal on 6 data sets. Notably, CUBTMax produces
ignificantly more leaf nodes than all other algorithms. This suggests
 t
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that two CUBT variants rely heavily on post-processing CUBTMax to
enhance their explainability in terms of nLeaf. Despite the use of
pruning and joining processes, CUBTHam and CUBTMI still produce
more leaf nodes than the purely tree growth algorithm, SigTree.

In the comparison of both maxDepth and avgDepth, SigTree demon-
strates closely matched performance with SHA, its top competitor. This
comparison shows that SHA excels in terms of Mean, while SigTree
stands out with respect to #Best. Notably, SHA aims to form shal-
low trees by utilizing measures like Weighted Average Depth in its
objective function, which are directly relevant to our explainability
performance metrics. SigTree, in contrast, achieves comparable results
using its testing-based splitting criteria, without explicitly targeting
tree depth during the tree growing process. Moreover, SigTree can
achieve superior performance over IMM in terms of these two depth-
based metrics. The worst-performing competitors are those CUBT vari-
ants. Specifically, CUBTMax and CUBTHam are significantly inferior to
SigTree.

Additionally, considering that the nLeaf number can impact the
axDepth and avgDepth metrics, we focus on a subset of data sets
here SigTree’s nLeaf aligns with other explainable 𝑘-means algo-

ithms. The Table 6 shows that SigTree can be the top performer among
all interpretable clustering algorithms in terms of both maxDepth and
avgDepth.

4.5. The comparison via the visualization of decision trees

In this section, we provide a practical example to illustrate the tree
structures created by various interpretable clustering algorithms, as
shown in Fig. 2. Each algorithm employs unique splitting strategies at
non-leaf nodes, resulting in distinct hierarchical structures. Achieving
perfect clustering results (both Purity and F-score equal to 1) on the So
data set depends on choosing appropriate splitting points at all non-
leaf nodes. We found that only SigTree, IMM and SHA can achieve
this objective on this data set. If we take the clustering quality into
consideration, only SHA can beat SigTree in terms of both clustering
quality and explainability on this data set.

Empirically, this example suggests that attributes frequently used
n splitting points are critical to the construction of an accurate and
oncise decision tree. Commonly utilized attributes in all trees include
Canker Lesion’, ‘Stem Canker’, and ‘Fruit Pods’. SHA, achieving perfect
lustering with the smallest maxDepth and avgDepth, incorporates all
hese commonly used attributes. Other algorithms that achieve perfect
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Table 5
The explainability comparison in terms of maxDepth and avgDepth for all interpretable clustering algorithms. #Best indicates the number of times that one algorithm is the
best performer across all data sets. CUBTMax and CUBTMI produce a decision tree whose maxDepth and avgDepth are both significantly larger than those of SigTree (using the
aforementioned Wilcoxon test).

Data set SigTree CUBTMax CUBTHam CUBTMI IMM RDM SHA

Metric: maxDepth

Ls 1 1 1 1 2 2 2
Lc 1 1 1 1 2 2 2
So 3 2 1 2 2.98 2.66 2
Zo 4 3 2 3 4.1 4.14 3.98
Ps 2 3 2 2 1 1 1
Hr 2 4 3 3 2 2 2
Ly 1 4 4 3 2.88 2.64 2.9
Hd 3 6 4 5 3.46 3.22 3.2
Sf 4 6 4 4 4.24 3.9 3.42
Pt 4 7 5 4 16.1 8.48 7.68
De 5 7 3 4 4.32 4.48 3.6
Hv 5 6 4 6 1 1 1
Bs 1 6 5 4 2 2 2
Ca 1 7 4 4 1 1 1
Bc 6 7 5 6 1 1 1
Mm 3 6 5 5 1 1 1
Tt 5 7 6 5 1 1 1
Ce 1 6 6 4 2.94 2.92 2.82

Mean 2.889 4.944 3.611 3.667 3.057 2.580 2.422
#Best 9 2 5 3 7 7 8

Metric: avgDepth

Ls 1 1 1 1 1.667 1.667 1.667
Lc 1 1 1 1 1.667 1.667 1.667
So 2.25 1.667 1 1.667 2.245 2.165 2
Zo 2.833 2.250 1.667 2.250 3.157 3.129 2.997
Ps 2 2.4 1.667 1.667 1 1 1
Hr 1.667 3.222 2.600 2.250 1.667 1.667 1.667
Ly 1 3.250 2.800 2.250 2.226 2.160 2.225
Hd 2.400 4.421 3 3.333 2.620 2.564 2.552
Sf 3.167 4.444 3 3.286 3.110 2.993 2.800
Pt 2.833 4.818 3.625 3.167 9.590 5.575 4.931
De 3.333 4.737 2.250 3 3.110 3.170 2.767
Hv 3.909 4.650 3.167 3.857 1 1 1
Bs 1 5.061 4.077 3.125 1.667 1.667 1.667
Ca 1 5.929 2.833 3 1 1 1
Bc 3.875 5.432 3.333 4.222 1 1 1
Mm 2.400 4.739 3.917 3.571 1 1 1
Tt 4.235 6.065 4.786 3.333 1 1 1
Ce 1 6 4.250 3.333 2.235 2.230 2.205

Mean 2.272 3.949 2.776 2.740 2.276 2.036 1.952
#Best 9 2 5 2 7 7 8
Table 6
The comparison of maxDepth and avgDepth on the ten data sets: Ls, Lc, So, Zo, Hr, Hd, Sf, De, Bs, Ca, where SigTree produces a nLeaf number approaching 𝐾 with a maximum
eviation of 1. The notations used here are consistent with those in Table 5.
Data set SigTree CUBTMax CUBTHam CUBTMI IMM RDM SHA

Metric: maxDepth

Mean 2.5 4.3 2.8 3.1 2.81 2.74 2.52
#Best 6 2 5 2 2 2 3

Metric: avgDepth

Mean 1.965 3.373 2.243 2.391 2.191 2.169 2.078
#Best 6 2 5 2 2 2 3
n
s
p

clustering, SigTree and IMM, each uses two of these frequently used at-
tributes. Interestingly, their initial splits are based on unique attributes,
howcasing the diversity of these approaches at finding effective splits.

Additionally, CUBTMax and CUBTHam, conforming to such cases, did
not achieve perfect clustering, possibly because their nLeaf numbers
do not align with 𝐾, but they avoided dividing samples of a single
disease into different leaf nodes (clusters). In contrast, RDM, exhibiting
worse clustering quality, incorrectly splits samples of the same disease
into different leaf nodes. It utilizes two unique attributes and applies
a commonly used attribute only at its last non-leaf node. This is also
in stark contrast to other trees where this attribute ‘Canker Lesion’ is
exclusively associated with the category brown.
 s
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5. Conclusions

In this paper, we introduce SigTree, an interpretable clustering
method for categorical data based on hypothesis testing. This method
is characterized by its distinct splitting point selection criteria based on
statistical association testing for constructing an unsupervised decision
tree. Overall, it has the following salient features: (1) It operates
without the need for manually specifying different parameters (e.g., the
umber of clusters) for different data sets. (2) As its only parameter, the
ignificance level is easy to be specified with a clear statistical inter-
retation. (3) It does not need to post-process the initial decision tree
ince whether each leaf node should be further divided is determined
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Fig. 2. Decision trees for interpretable clustering algorithms on the So data set. Each splitting point in the non-leaf nodes is presented using the actual attribute and category
names, denoted as ‘Attribute = Category’. The dna category stands for ‘does not apply’. The leaf nodes, indicative of predicted clusters, are labeled with the actual cluster names
corresponding to the samples they contain, depicted as ‘(number of samples, cluster name)’. The original data set comprises four clusters, where each cluster is associated with a
specific soybean disease: DS1 for Diaporthe stem canker, DS2 for Charcoal rot, DS3 for Rhizoctonia root rot, and DS4 for Phytophthora rot. Attributes used in the decision trees of
six algorithms, appearing two or more times, are highlighted in blue. Notably, ‘Canker Lesion = brown’ emerges as the most frequently used splitting point.. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
c
J
W
t

according to a rigorous significance testing procedure. (4) It does not
need the clustering result of a third-party non-interpretable clustering
lgorithm as the input to facilitate the decision tree construction.
mpirical results on real data sets show that our method is comparable
o those SOTA categorical data clustering algorithms with respect to the
lustering quality. More importantly, it can beat existing interpretable
lustering algorithms for categorical data in terms of both clustering
uality and explainability.

There are two main limitations in our method that need to be
urther addressed. Firstly, finding the optimal split in SigTree is time-
onsuming as it requires calculating 𝑝-values for all candidate splits.

To address this, future research could focus on designing branch-and-
bound methods to reduce the search space. Secondly, it is challenging
to provide a theoretical guarantee that our method can obtain an
ptimal decision tree, primarily due to the absence of an explicit clus-
ering objective function. We will explore the possibility of assessing
he statistical significance of each candidate unsupervised decision

tree. Accordingly, the 𝑝-value of an entire decision tree can serve as
the objective function to guide us to find more accurate and concise
decision trees.

In addition to those two limitations, our algorithm encounters
ilemmas when applied to larger data sets, particularly those with
 high number of attributes. This is fundamentally due to inherent
laws in the chi-squared test, specifically its lack of an interpretable
ejection of the null hypothesis [39]. In other words, larger sample

sizes are more likely to inflate the chi-squared test statistic as calculated
according to Eq. (4). On one hand, larger absolute differences between
observed and expected frequencies in each cell of contingency tables
would be reported for data sets with more samples. On the other hand,
the increase on the number of attribute will yield a larger test statistic
as well. This inflated chi-squared test statistic skews 𝑝-values extremely
close to zero, making it difficult to control the false discovery rate
sing thresholds like those in Eq. (8). In future research, along with the

testing-based framework for developing interpretable categorical data
clustering algorithms, we will explore more valid alternative statistical
tests to replace the currently used chi-squared test.
10 
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