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a b s t r a c t 

The evidence accumulation model is an approach for collecting the information of base partitions in a 

clustering ensemble method, and can be viewed as a kernel transformation from the original data space 

to a co-association matrix. However, cluster structure information may be partially lost in this transfor- 

mation; hence, some methods proposed in the literature try to find the lost information and return it to 

the ensemble process. In this paper, an interesting phenomenon is introduced: remove some evidences 

from the co-association matrix, which can result in more accurate clustering results. The intuitive expla- 

nation for this is that some evidences in the original co-association matrix could be noise, with negative 

effects on the final clustering. However, it is difficult to detect those evidences practically, let alone re- 

move them from the matrix. To remedy this problem, we remove multiple level evidences having low 

occurrence frequencies, because negative evidences do not normally occur regularly in the base parti- 

tions. Subsequently, we use normalized cut to achieve multiple clustering results. To discriminate the 

optimal ensemble result, an internal validity index, which uses only the co-association matrix, is spe- 

cially designed for the clustering ensemble. The experimental results on 16 datasets demonstrate that 

the proposed scheme outperforms some state-of-the-art clustering ensemble approaches. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cluster analysis is a fundamental problem in pattern recogni-

ion, data mining, and machine learning communities. It normally

eals with two kinds of problems: whether a cluster structure ex-

sts in a dataset, and what type of cluster structure exists in the

ataset. The former problem is to evaluate clusterability [1] , and

he latter is to detect the clustering. Although many clustering

lgorithms have been proposed in the literature [2–10] , there is

ot one currently that can deal with all clustering problems [11] .

ompared with conventional clustering methods, such as hierarchi-

al, partitional, and density-based clustering, clustering ensemble

12–17] is relatively more universal, robust, and accurate. A cluster-

ng ensemble scheme usually consists of two components: a base

artition generator and a final clustering generator. 

To generate a set of base partitions, two performance indices

uality and diversity are usually focused upon. If a base partition

s of good quality, then its cluster homogeneity rate is high and
∗ Corresponding author. 
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ts heterogeneity rate is low. Here, the cluster homogeneity rate

f a base partition is defined as the percentage of the number

f data point pairs that have the same cluster label in both the

ase partition and the ground truth (SS pairs). The heterogeneity

ate is defined as the percentage of the number of pairs that have

he same cluster label in the base partition but different in the

round truth (SD pairs). Intuitively, SS pairs have a positive effect

n final clustering, and SD pairs have a negative effect. Diversity

f the base partitions means specifying how different views of the

luster structure are disclosed by different base partitions. If each

ase partition discloses the cluster structure from different view-

oints, their consensus may indicate the global image of the struc-

ure. However, Hadjitodorov et al. claimed that moderate diversity

f the base partitions could be more effective for cluster ensemble

18] . This paper does not focus on this topic. 

Base partitions are usually produced in three ways: the same

lustering algorithm with different parameters (different initial sta-

us), different clustering algorithms, and different subspaces. For

he first kind of approach, K-means is frequently used as a base

artition generator [19–22] . K-means can capture the local in-

ormation of clusters (especially when the number of clusters is

https://doi.org/10.1016/j.patcog.2019.03.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.03.020&domain=pdf
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large), and is computationally efficient and produces different clus-

terings in different runs. When different clustering algorithms are

employed to produce the base partitions, these algorithms should

be selected complementarily to each other so that the base parti-

tion can describe the cluster structure from different views. Yoon

et al. used K-means, the hierarchical algorithm, and a principle

component analysis-based algorithm to generate the base parti-

tions [23] . For high dimensional datasets, different subspaces can

be projected to generate different base partitions [24] . This is be-

cause the cluster structure of a high dimensional dataset may be

embedded in a certain subspace. 

After being generated, the base partitions will be represented so

that the cluster structure can be easily disclosed. The widely used

representations include co-association matrix [20] , binary matrix

[19] , and hypergraph [25] . The co-association matrix records the

frequency of each pair appearing in the same cluster. This fre-

quency can discover the neighbourhood information; hence, it can

act as the similarity of a pair. Moreover, the co-association matrix

can be viewed as a kernel transformation of the original data. A

notable fact is that the original base partitions cannot be derived

from a given co-association matrix. This means some partition in-

formation could be missed during the transformation from the par-

titions to the matrix. The binary matrix focuses on the relationship

between a data point and a base cluster. For example, an entry is

1 if the data point belongs to the corresponding cluster, and 0 oth-

erwise. In addition, it can be considered as a space transformation

that conveys all the information of the base partitions. Strehl and

Ghosh in [25] represented the based clusterings as a hypergraph, of

which a hyperedge is a base cluster. After the base partitions are

represented, some clustering algorithms (or graph partition meth-

ods) can be applied to the representations to obtain the final clus-

tering. 

Some improvements have been proposed in the literature to

refine the co-association and binary matrices. To refine the co-

association matrix, Zhong et al. [22] observed that in the same

base cluster, point pairs with different distances could have differ-

ent weights to accumulate the similarity evidences, and replaced

occurrence frequencies with occurrence probabilities. Furthermore,

the stability of a base cluster is also considered [22] . Huang et al.

explored the uncertainty of a base cluster, and refined the co-

association matrix according to the uncertainty [14] . Iam-On et al.
0
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Fig. 1. (a) is a dataset with 300 points belonging to three Gaussian clusters, of which 

average percentage of SS and SD pairs in the base partitions generated by K-means (10 ru

et to 4. 
efined zero entries in the binary matrix by measuring the simi-

arity of two base clusters in the same base partition; hence, some

idden information was discovered and used [19] . Moreover, Liu

t al. directly applied K-means to the binary matrix with entropy-

ased utility function and KL-divergence distance measure [26] . 

In this paper, we focus on remodelling the co-association ma-

rix by removing some information from the matrix so that it can

ore effectively portray the intrinsic cluster structure. The main

ifference between this work and [22] is that the former removes

lurring cluster structure information from the matrix, while

he latter discovers some extra information of depicting cluster

tructure and adds it into the matrix. In addition, a dedicated

nternal validity index is proposed for clustering ensemble, as it

nly uses the information of co-association matrix rather than

he original dataset, which may be not available in a clustering

nsemble scenario. 

The rest of the paper is organised as follows. Section 2 pro-

ides a brief background of the co-association matrix and a vi-

ual assessment of cluster tendency. Section 3 details the proposed

ethod, which contains the procedure of removing negative infor-

ation from the co-association matrix and a new clustering valid-

ty index dedicated for clustering ensemble. The experimental re-

ults are presented in Section 4 . Finally, Section 5 concludes the

aper. 

. Background 

.1. Base clusterings 

Let X = { x 1 , x 2 , . . . , x N } be a dataset, where x i = (x i 1 , . . . , x id ) 
T ∈

 

d , d is the dimensionality of X , and N is the number of data

oints. The base partitions are usually generated by K-means with

 fixed number of clusters, i.e., K = 

√ 

N [22] . This is because, as

 general rule, the number is not bigger than 

√ 

N [27] . In addi-

ion, the number of SD pairs is relatively small and the number of

S pairs is relatively large, and this situation is expected for en-

emble. By comparison, the quantity of SD is more important than

hat of SS, because an SD pair has a negative effect on the en-

emble process, while an SS pair has a positive effect. An exam-

le is illustrated in Fig. 1 , in which the number of clusters K is

et to 17, and both the quantities of SS and SD are close to the
19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

SS

SD

(b)

number of 
clusters

C 1 and C 2 have 50 data points each, and C 3 has 200 data points. Here, (b) is the 

ns) with different number of clusters K , where the iteration number of K-means is 
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neels of the curves of the percentage of pairs and the number of

lusters. 

The diversity of base partitions is considered by setting the it-

ration number of K-means. Normally, this is set to 100 in some

ools (such as MATLAB). However, to generate base partitions for

nsemble is not necessary for K-means to be convergent for the

urpose of high diversity, and the iteration number could be rela-

ively small. In Fig. 1 , it is set to 4. 

.2. Co-association matrix 

Let P 1 , . . . , P M 

denote the M base partitions, where P i =
 C i 1 , . . . , C iK i } , C ij is the j th cluster of P i , K i is the number of clusters

n P i . Suppose P = { C 1 , . . . , C K } is the final clustering, and K is the

umber of clusters in P, C i is a cluster of P . 

A co-association matrix ( CM ) is defined as follows [20] : 

M(i, j) = 

1 

M 

M ∑ 

m =1 

K m ∑ 

l=1 

T (i, j, C ml ) (1)

here CM ( i, j ) denotes an entry of CM, C ml is the l th base cluster

n P m 

, and T (i, j, C ml ) is an indicator: 

 (i, j, C ml ) = 

{
1 , if x i ∈ C ml ∧ x j ∈ C ml 

0 , otherwise 
(2)

A co-association matrix depicts the frequency of a pair appear-

ng in a similar base cluster, and it can be viewed as a similarity

atrix for clustering. In this paper, we focus on how to detect the

luster structure according to this matrix. 

.3. Confusion of a pair 

From the definition of CM ( i, j ), the homogeneity (or hetero-

eneity) relationship of the pair x i and x j is deterministic when

M ( i, j ) is 1 (or 0), but totally confused when CM ( i, j ) is 0.5. Ren

t al. defined an index, confusion, to depict the uncertainty of a

air, as follows [28] : 

on f usion (x i , x j ) = CM(i, j) ∗ (1 − CM(i, j)) (3)

ccording to the confusion, the weight of a point is defined: 

 (i ) = 

w 

∗(i ) + e 

1 + e 
(4) 
P1

PM

CM

Remodeled C

Remodeled C

if CM(i, j)<0.01, then CM(i, j)=0 

if CM(i, j)<0.50, then CM(i, j)=0 

Fig. 2. The overview of th
here e is a small positive number, and 

 

∗(i ) = 

4 

N 

N ∑ 

j=1 

con f usion (x i , x j ) (5)

t is claimed that the points with large weights are difficult to clus-

er [28] . 

.4. Visual assessment of cluster tendency 

Visual assessment of cluster tendency (VAT) is to reorder the pair-

ise dissimilarity matrix D of X , denoted by D 

∗, so that the cluster

tructure information is represented by an image I ( D 

∗). It can also

e used directly to cluster the dataset by segmenting the image

29–32] . 

The idea of VAT is that the more similar a pair, the more closely

hey will be reordered. As VAT only reorders the dissimilarity ma-

rix, the cluster structure remains unchanged ( Algorithm 1 ). 

Algorithm 1: Visual assessment of cluster tendency (VAT). 

Input : N × N dissimilarity matrix D = [ d i j ] 

Output : Reordered dissimilarity matrix D 

∗ = [ d ∗
i j 

] 

1 J ← { 1 , 2 , . . . , N} , I ← ∅ , Q ← (0 , 0 , . . . , 0) 

2 [ i, j] ← arg min p,q ∈ J { d pq } 
3 Q(1) ← j, I ← I ∪ { j} , J ← J − { j} 
4 for t = 2 , . . . , N do 

5 [ i, j] ← arg min p∈ I,q ∈ J { d pq } 
6 Q(t) ← j, I ← I ∪ { j} , J ← J − { j} 
7 d ∗

i j 
← d Q (i ) Q ( j) , for 1 ≤ i, j ≤ N 

. The proposed method 

.1. Overview of the proposed method 

An overview of the proposed method is illustrated in Fig. 2 .

he input is a set of base partitions, and the output is the final

lustering. The concrete steps are described as follows. As a self-

ontained method, the base partitions are generated by K-means

ith the number of clusters fixed to 
√ 

N . Then, the co-association

atrix is created, and each element of the matrix is between 0 and

. Remodelled matrices are produced by setting those elements

ess than different thresholds to 0, and Ncut is applied to these
M

M

1

50

Ncut

Ncut

CVI: MM

CVI: MM

Final clustering

e proposed method. 
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(a) (b)

Fig. 3. The dataset in Fig. 1 is represented by a co-association matrix and the VAT 

matrix. In (a), the left is the co-association matrix and the data points in the matrix 

are randomly permuted; to the right are the corresponding cluster labels of the 

ground truth. The left in (b) is the co-association matrix reordered by VAT, and to 

the right are the corresponding cluster labels of the ground truth. 
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matrices to obtain multiple clusterings. The final clustering is se-

lected by a new internal validity index MM. 

3.2. Cluster structure and VAT matrix 

As the final clustering is generated from the co-association ma-

trix, this matrix should precisely represent the cluster structure.

However, it is difficult to discern directly how accurate the matrix

depicts the structure. One way could be to reorder the original co-

association matrix by the VAT algorithm. The reordered version is

then called the VAT matrix, from which the cluster structure can

be observed directly (to some extent). 
Nega�ve Informa�on is removed (both r1 and r2)

(c)

(a)

C1

C2
(b1)

C3

b1

b3

b2

b4

b5

C12
(b2)

C32
(b3)

C11
(b4)

C31
(b5)

C2

r1

r2

Fig. 4. The dataset in Fig. 1 is analysed by the VAT matrix and modified VAT matrix. Th

owards this matrix, and the bar in the middle is the corresponding cluster labels. This

contains C 11 and C 12 , which correspond to blocks b4 and b2, respectively. The cluster C 3
cluster C 2 corresponds to block b1. In the left of (b), negative evidences are marked in the

are from block pairs b4 and b2, and b1 and b2. In the left of (c), the negative evidences a

zero. The right in (c) is the clustering result generated by Ncut on the modified VAT matr

the clustering result with only negative evidences in r1 removed. 
In Fig. 3 , for example, we randomly permute the data points

rom the dataset illustrated in Fig. 1 (a); however, no cluster struc-

ure information can be perceived from Fig. 3 (a). When the VAT

lgorithm is applied to the original co-association matrix, the clus-

er structure emerges in Fig. 3 (b). Please note, for some cluster-

ng algorithms such as normalised cut (Ncut) [33] , the original co-

ssociation matrix and the matrix reordered by VAT have the same

apability to depict the cluster structure, as they have only differ-

nt data point orders, which have nothing to do with the cluster

tructure. 

Although the VAT matrix may not depict the exact cluster struc-

ure directly, the exact structure can be discovered by observing

he clues presented by the matrix. 

.3. VAT matrix’s clue: Negative evidence 

The dataset in Fig. 1 is analysed by Ncut with the co-association

atrix. In the left of Fig. 4 (a), VAT applied on the original co-

ssociation matrix divides the dataset into five blocks. For a pair

n the VAT matrix, darker equates to being more similar. The clus-

ering result on the matrix is illustrated to the right of Fig. 4 (a).

his result is unexpected, because a part of the data points of C 3 
namely, C 12 ) is clustered into C 1 . 

Looking into the dotted rectangle r1 in the left of Fig. 4 (b)

which represents the similarities of block b4 to blocks b2 and b3),

ome similarities can be observed between b4 and b2. The simi-

arities between b4 and b2 are caused by the fact that some data

oints from C 11 and C 12 are partitioned into the same base clus-

ers. Similarly, b1 and b2 have some similarities marked in r2, but
(b)

C1

C2

C3

b1

b3

Nega�ve Informa�on is to be removed

b2

b4

b5

C2
(b1)

C12
(b2)

C11
(b4)

Nega�ve Evidence

Nega�ve Evidence

r1

r2

Nega�ve Informa�on is removed (only r1)

(d)

r1

r2

e left in (a) is the VAT matrix, the right is the clustering result generated by Ncut 

 bar is composed of five blocks, which are denoted from b1 to b5. The cluster C 1 

 

consists of C 31 and C 32 , which correspond to blocks b5 and b3, respectively. The 

 dotted rectangles. From the right of (b), it can be seen that the negative evidences 

re removed from the VAT matrix; the similarities of pairs in the regions are set to 

ix, and the bar in the middle is the corresponding cluster labels. The right of (d) is 
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c  
re fewer than those between b4 and b2. This is why C 12 and C 11 

re partitioned into the same final cluster by Ncut. 

With this observation in mind, we try to remove the similarities

n r1 and r2 manually. After the removal, Ncut can provide a sat-

sfied clustering result, which is illustrated in Fig. 4 (c). Please note,

f only similarities in r1 are removed, then C 12 will be partitioned

nto C 2 because the similarities between b1 and b2 still exist in r2.

his situation is illustrated in Fig. 4 (d). 

We call the similarity evidences in the dotted rectangles nega-

ive evidences, as they have some negative effects on the final clus-

ering. Next, we consider why the removal of negative evidences

ight lead to a good clustering result. Considering that Ncut is ap-

lied to the negative information removed by the VAT matrix, we

resent the following theorem: 

heorem 1. Suppose X is composed of two clusters A and B, which

re reordered by VAT into m and n sub-clusters as A 1 , . . . , A m 

and

 1 , . . . , B n respectively. If no similarity evidence exists between A i and

 j ( 1 ≤ i ≤ m , 1 ≤ j ≤ n), but there is some between A i and A j ( 1 ≤ i ≤ m ,

 ≤ j ≤ m) or between B i and B j ( 1 ≤ i ≤ n , 1 ≤ j ≤ n), Ncut will find the

ptimal clustering. 

roof. The objective function of Ncut is: 

 Ncut (A, B ) = 

S(A, B ) 

S(A, A ) + S(A, B ) 
+ 

S( A, B ) 

S( B, B ) + S(A, B ) 
(6)

here S(A, B ) = 

∑ 

i ∈ A 
∑ 

j∈ B w i j , w ij is the similarity of x i and x j , and

 Ncut ( A, B ) is to be minimised. In this paper, CM ( i, j ) is regarded as

 ij . 

According to the supposition of the claim, S(A i , B j ) = 0

1 ≤ i ≤ m , 1 ≤ j ≤ n ), then S(A, B ) = 0 . For any clustering, if ∃ B i ⊂ A

r ∃ A i ⊂ B , then S ( A, B ) > 0. Therefore, if the supposition is satis-

ed, the optimal clustering will be achieved. �

When kernel K-means [34] is applied to the negative informa-

ion removed by the VAT matrix, the following theorem holds: 

heorem 2. Suppose X is composed of two clusters C 1 and C 2 , if no

imilarity evidence exists between C 1 and C 2 , and the average similar-

ty of objects inside C 1 is equal to that inside C 2 , the kernel K-means

ill find the optimal clustering. 

roof. Let d nk denote the distance between x n and the centre of

 k , and it can be computed as in [34] : 

 nk = κ(x n , x n ) − 2 

N k 

N ∑ 

m =1 

z mk κ(x n , x m 

) + 

1 

N 

2 
k 

N ∑ 

m =1 

N ∑ 

r=1 

z mk z rk κ(x m 

, x r ) ,

(7)

here κ( x n , x m 

) is a kernel function, and z mk denotes whether x m 

s in C k . 

κ( x n , x m 

) can be replaced by the similarity of x n and x m 

under a

ertain similarity measure. For example, when the kernel function

s replaced by a Gaussian kernel, we may use CM ( n, m ) to replace

( x n , x m 

). 

Suppose for any x i ∈ C 1 and x j ∈ C 2 , CM(i, j) = 0 , then we have

he following: 

 i 1 = C M(i, i ) − 2 

N 1 

N ∑ 

m =1 

z m 1 C M(i, m ) + 

1 

N 

2 
1 

N ∑ 

m =1 

N ∑ 

r=1 

z m 1 z r1 C M(m, r) , 

(8) 

nd 

 i 2 = C M(i, i ) + 

1 

N 

2 
2 

N ∑ 

m =1 

N ∑ 

r=1 

z m 2 z r2 C M(m, r) (9)

s the average similarity of objects inside C 1 is equal to that inside

 2 , d i 1 < d i 2 . Similarly, d j 2 < d j 1 . That is to say, kernel K-means can

nd the optimal clustering. �
The above two theorems indicate that the removal of the sim-

larity evidence may lead to a good clustering result. However, it

s difficult to determine which evidences should be removed. For-

unately, the removed evidence has a prominent characteristic: the

orresponding similarity is small. This phenomenon is reasonable:

or a clustering, if a pair of data points is in the same cluster but

as different cluster labels in ground truth, then the correspond-

ng entry in CM should be small. This can be explained from the

iewpoint of SD pair and confusion. 

In the base clusters, we assume that the frequencies of occur-

ence of SD pairs are usually small; otherwise, the quality of the

ase partitions is low. If this assumption holds, to remove the sim-

larity evidence in the dotted regions is to remove SD pairs. More-

ver, in any ensemble scheme, SD pairs have a negative contribu-

ion to the final clustering; meaning small frequencies of occur-

ence should be removed. 

Ren et al. defined a confusion and weight index, and claimed

hat it would be difficult to cluster a point with a large weight [28] .

onfusion of a pair means the uncertainty of a pair of data points

eing in the same cluster. For any pair, the confusion is maximised

hen the normalised frequency is 0.5. When a frequency is much

ess than 0.5, the corresponding pair could be regarded as an SD

air. 

.4. Collect the candidate clusterings 

According to the above discussion, although it is difficult to

etermine the negative evidence regions, we can collect multiple

andidates of the final clustering by gradually removing the simi-

arity evidences of CM in [0, 0.5] with step of 0.01, and then apply-

ng Ncut to the changed CM s. 

The algorithm is described in Algorithm 2 . In line 8, a candidate

Algorithm 2: Collect the candidate clusterings. 

Input : Co-association matrix CM, number of clusters K 

Output : Collection of candidate clusterings C 
1 C ← ∅ 
2 S ← [0 , 0 . 01 , 0 . 02 , . . . , 0 . 5] 

3 for each s ∈ S do 

4 C M 

′ ← C M 

5 for each CM 

′ (i, j) do 

6 if CM 

′ (i, j) ≤ s then 

7 CM 

′ (i, j) ← 0 

8 C ← C ∪ Ncut(CM 

′ , K) 

lustering is achieved by using Ncut on the similarity matrix CM 

′ ,
hich is a modified CM . Please note that when Ncut is applied,

M 

′ is not transformed with the Gaussian kernel again; hence, K is

he specified number of clusters in a clustering. 

After the candidate clusterings are collected, the best clustering

s selected as the final clustering. To achieve this, an effective inter-

al clustering validity index is needed. However, the well-known

nternal validity indices, such as DB [35] , Dun [36] , are not so ef-

ective for some datasets with complex cluster structures. More-

ver, some of these indices require the information of the original

ataset, which may not be available in a clustering ensemble sce-

ario. In this paper, we propose a new index that only uses the co-

ssociation matrix and is more effective than some popular indices.

.5. Determine the best clustering 

.5.1. Internal validity index 

An internal validity index is a criterion that measures the

lustering quality without any extra information, except for the
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dataset. In general, it can be used for two tasks: to select the best

clustering (or clustering algorithm), and to determine the optimal

number of clusters. The latter depends on a hypothesis: for clus-

terings produced by the same algorithm, the one with the optimal

number of clusters is better than those with a non-optimal num-

ber of clusters. However, in this paper, we only focus on the first

task of distinguishing the best clusterings. 

Two factors are generally considered for designing an inter-

nal validity index: compactness and separation [37] . Compactness

measures distances of data points in the same cluster, and it is

usually computed by the sum-of-squared error. Separation mea-

sures the distances of data points in different clusters, and is nor-

mally computed by the distance of two cluster centres. These two

factors may come from the definition of clustering: data points in

the same cluster are similar, and those in different clusters are dis-

similar. However, validity indices designed from this definition fail

when the dataset has a complex structure. 

In addition, traditional indices are designed for normal cluster-

ing algorithms, but not for clustering ensemble. In some cases, only

base partitions are available, and some traditional indices do not

work because they need information from the original dataset. In

this paper, a new validity index, called MM index, is proposed. It

is based on the following cluster definition: a high-density region

separated by low-density regions, and can be applied to clustering

ensemble. 

3.5.2. Minimax similarity 

Suppose G = (X, E) is an undirected graph of X , and S X is the

similarity matrix of X . The minimax similarity [38] is defined as

follows: 

Let P 

X 
i j 

denote the set of all possible paths between vertex

x i ∈ X and x j ∈ X . The minimax similarity between x i and x j with

respect to S X is: 

Sim (x i , x j , S X ) = max 
P∈ P 

X 
i j 

{
min 

1 ≤m< |P| s (P [ m ] , P [ m + 1]) 

}
(10)

where Sim (x i , x j , S X ) is the minimax similarity between x i and x j ,

P is a path from vertex x i to x j , P[ m ] is the m th vertex along the

path, and s ( x p , x q ) is the similarity of x p and x q from S X . 
This minimax similarity can be computed efficiently by using

the minimum spanning tree [39] . 

Chang et al. proposed a robust minimax similarity to rule out

the effect of noise data [38] . The robust minimax similarity is de-

fined as follows: 

RSim (x i , x j , S X , l) = max 
P∈ P 

X 
i j 

{
min 

1 ≤m< |P| s (P [ m ] , P [ m + 1]) w m 

w m +1 

}
(11)

where w m 

= 

∑ 

x p ∈N (x m ,l) 
s (x m 

, x p ) / max x q ∈ X ( 
∑ 

x k ∈N (x q ,l) 
s (x q , x k )) ,

and N (x , l) is the set of l nearest neighbours of x . 

3.5.3. MM 

Suppose C = { C 1 , . . . , C K } is the clustering to be measured. The

minimax similarity based internal validity index, MM, is defined

as: 

MM = 

∑ 

1 ≤i ≤K 

cohesion (C i , X \ C i ) /stability (C i ) (12)

where cohesion ( C i , C j ) is the cohesion between cluster C i and C j ,

and stability ( C i ) is the stability of C i . The former focuses on the

density-based connectivity of C i with other clusters, and the latter

focuses on the inner density-based connectivity of C . 
i 
The robust minimax similarity matrix is used to define the co-

esion and the stability as follows: 

ohesion (C i , C j ) = max 
x p ∈ C i , x q ∈ C j 

RSim (x p , x q , S X , l) (13)

tability (C i ) = min 

x p ∈ C i 1 , x q ∈ C i 2 
RSim (x p , x q , S C i , l) (14)

here C i 1 and C i 2 are produced by bi-partitioning C i with a clus-

ering algorithm, and Ncut is used in this paper. Please note, when

tability ( C i ) is computed, the paths are only composed of edges

rom C i . This is to remove the effects of those data points not in

 i . 

To obtain a good clustering, it is expected that the cohesion of

 i and X �C i is weak and the stability of C i is strong. Therefore, the

lustering with the smallest MM is expected. 

The intuition behind MM is that in a clustering with high qual-

ty, a cluster is a high-density region separated by some low-

ensity regions. This conforms to the definition of a cluster in [40] :

ata points are likely in the same cluster if there is a path connect-

ng them passing through regions of high density only. 

The parameter l in MM is the number of the nearest neigh-

ours, which can convey the local density information. If there is a

ath connecting the data points only passing through high-density

egions, it can be disclosed by the minimax similarity combined

ith this local density information. In all the experiments, param-

ter l is set to 3. The discussion of l is in Section 4.5 . 

The algorithm of MM is described in Algorithm 3 . In line 1,

Algorithm 3: Compute MM measure. 

Input : Similarity matrix S X , number of nearest neighbours l, 

clustering to be measured C = { C 1 , . . . , C K } 
Output : Quality measured by MM 

1 RS X ← RSim (x p , x q , S X , l) | x p , x q ∈ X 
2 mm ← 0 

3 for i = 1, 2 , . . . , K do 

4 if | C i | < l then 

5 return INF 

6 coh ← max x p ∈ C i , x q ∈ X\ C i RS X 

7 S C i ← S X (C i ) 
8 RS C i ← RSim (x p , x q , S C i , l) | x p , x q ∈ C i 
9 [ C i 1 , C i 2 ] ← Ncut(RS C i , 2) 

10 st ← min x p ∈ C i 1 , x q ∈ C i 2 RS C i 
11 mm ← mm + coh/st 

12 return mm 

S X is the robust minimax similarity matrix of X . For simplicity, in

ines 4 and 5, when the cardinality of C i is less than the number of

eighbours, this partition is directly discarded, as C i is a spurious

luster. In line 7, the similarity matrix of C i is formed by simply

xtracting corresponding rows and columns from S X . 
The final clustering ensemble result is achieved by selecting the

andidate clustering with minimum MM value; see Algorithm 4 . 

Algorithm 4: Negative evidence removed clustering ensemble 

(NegMM). 

Input : Collection of candidate clusterings C 
Output : Final clustering C f inal 

1 C f inal ← NULL 

2 for each C i ∈ C do 

3 if C f inal is NULL or M M (C f inal ) > M M (C i ) then 

4 C f inal ← C i 
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.6. Computational complexity 

Given a set of base partitions, the computational complexity of

he proposed method is analysed as follows: 

The computational time can be composed of two parts: T 1 and

 2 . The computational time of producing the candidate clusterings

rom a set of base partitions is denoted as T 1 , and computational

ime of selecting the final clustering from the candidates is de-

oted as T 2 . Further, T 1 includes the time of computing CM and

roducing the candidate clusterings. The time to compute CM from

 base partitions is as follows: 

 CM 

= 

M ∑ 

i =1 

∑ 

C i j ∈ P i 

(| C i j | 
2 

)
(15) 

For simplicity, we suppose each base partition has 
√ 

N clusters,

nd the clusters have the same size. Then, T CM 

≈ 1 
2 M ∗ N 

3 
2 . 

To generate a candidate clustering, we first set the entries of

M that is less than a given threshold to 0, which takes O ( N 

2 ).

hen, a candidate clustering is produced by Ncut with time com-

lexity of O ( N 

3 ) [41] . Therefore, the computational complexity of

roducing candidate clusterings from the given base partitions T 1 

s O (N 

3 + N 

2 + 

1 
2 M ∗ N 

3 
2 ) . 

To select the final clustering from the candidates, we use the

roposed internal validity index MM. The two components of MM

re cohesion and stability , which are both computed from the ro-

ust path-based similarity. As the time complexity of the robust

ath-based similarity is O ( N 

2 ) [42] , MM has the same complexity:

 2 = O (N 

2 ) . 

Considering T 1 and T 2 simultaneously, the proposed method has

 computational complexity of O ( N 

3 ). 

. Experimental analysis 

.1. Compared internal clustering indices 

In this section, the compared internal indices are introduced,

hich are listed in Table 1 . 

1. Silhouette index [43] . It is defined as: 

Sil(C) = 

1 

N 

∑ 

C i ∈ C 

∑ 

x ∈ C i 

b(x , C i ) − a (x , C i ) 

max ( a ( x , C i ) , b(x , C i )) 
(16) 

where C = { C 1 , . . . , C K } , a (x , C i ) = 

1 
| C i | 

∑ 

x ′ ∈ C i d(x , x ′ ) , and b(x , C i )

= min C j ∈ C\ C i { 1 
| C j | 

∑ 

x ′ ∈ C j d(x , x ′ ) } . d ( x, x ′ ) is the distance be-

tween the pair of data points x and x ′ . 
This index measures the normalised difference between the in-

tracluster and intercluster average distances, where a ( x , C i ) is

the compactness of C i , and b ( x , C i ) represents the separation of

C i . Its value can be from −1 to 1, where 1 represents the best. 

2. The Davies-Bouldin index [35] measures the intracluster simi-

larity by the average distance from objects to the cluster centre,

and the intercluster similarity by the distance between cluster
Table 1 

The internal validity indices to be compared. 

Internal validity indices Optimal value Refs 

Silhouette Min [43] 

Davies-Bouldin Max [35] 

Calinski-Harabasz Max [44] 

Dunn Min [36] 

S_Dbw Max [45] 

CVNN Max [37] 

I Min [46] 

4
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s  

a  

i

 

a  

t  

t  

b  
centres. It is defined as follows: 

DB (C) = 

1 

K 

∑ 

C i ∈ C 
max 

C j ∈ C\ C i 
S i + S j 

d( mean (C i ) , mean (C j )) 
(17) 

where S i = 

1 
| C i | 

∑ 

x ∈ C i d(x , mean (C i )) , and mean (C i ) is the centre

of C i . 

3. The Calinski-Harabasz index [44] is defined as follows: 

C H(C ) = 

N − K 

K − 1 

∑ 

C i ∈ C (| C i | d( mean (C i ) , mean (X ))) ∑ 

C i ∈ C 
∑ 

x ∈ C i d(x , mean (C i )) 
(18) 

where mean (X ) is the centre of X . 

4. The Dunn index [36] is defined as follows: 

Dunn (C) = 

min C i ∈ C,C j ∈ C\ C i δ(C i , C j ) 

max C k ∈ C �(C k ) 
(19) 

where δ(C i , C j ) = min x ∈ C i , x ′ ∈ C j d(x , x ′ ) , and �(C k ) = max x , x ′ ∈ C k 
d(x , x ′ ) . 

5. S_Dbw index [45] . Suppose the standard deviation of a cluster

is as σ (C i ) = 

1 
| C i | 

∑ 

x ∈ C i (x − mean (C i )) 
2 , and the standard devi-

ation of clustering is as stdev (C) = 

1 
K 

√ ∑ 

C i ∈ C ‖ C i ‖ , ‖ x ‖ = 

√ 

x T x

is defined as follows: 

S _ Dbw (C) = Scat(C) + Den (C) (20) 

where 

Scat(C) = 

1 

K 

∑ 

C i ∈ C 

σ (C i ) 

σ (X ) 

Den (C) = 

1 

K(K − 1) 

∑ 

C i ∈ C 

∑ 

C j ∈ C\ C i 

den (C i ∪ C j ) 

max (den (C i ) , den (C j )) 

den (C i ) = 

∑ 

x ∈ C i 
f (x , mean (C i )) 

and f (x , mean (C i )) = 0 , if d(x , mean (C i )) > stdev (C) , and 1,

otherwise. 

6. CVNN index [37] . 

CV N N (C) = Sep(C, l) + Com (C) (21)

where Sep(C, l) = max C i ∈ C 
∑ 

x ∈ C i ((|N (x , l) \ C i | ) /l) , 

C om (C ) = 

∑ 

C i ∈ C 
2 

| C i |×(| C i |−1) 

∑ 

x , x ′ ∈ C i d(x , x ′ ) , and N (x , l) is the

set of l nearest neighbors of x . 

7. I index [46] . 

I(C) = 

(
1 

K 

×
∑ 

x ∈ X d(x , mean (X )) ∑ 

C i ∈ C 
∑ 

x ∈ C i d(x , mean (C i )) 
× D K 

)p 

(22) 

where D K = max C i ,C j ∈ C d( mean (C i ) , mean (C j )) . 

mong the above 7 indices, CVNN and S_Dbw take density infor-

ation into account, while the others only employ Euclidean dis-

ance information. 

.2. Experimental datasets and compared clustering ensemble 

lgorithms 

The proposed method is tested on 16 datasets, of which 8 are

ynthetic and 8 are real. The synthetic two-dimensional datasets

re shown in Fig. 5 . Detailed descriptions of these 16 datasets are

n Table 2 . 

Dataset path based is composed of two Gaussian clusters and

n unclosed ring cluster. It is difficult to detect the cluster struc-

ure by a single compactness-based or connectivity-based objec-

ive function. Dataset Spiral has three link-based clusters, and can

e easily dealt with by a single-linkage algorithm. However, this
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Fig. 5. Synthetic datasets. 

Table 2 

The description of the datasets. 

Datasets Classes Objects Dimensions Refs 

Pathbased 3 300 2 [38] 

Spiral 3 312 2 [38] 

Toy problem 2 373 2 [48] 

Flame 2 240 2 [49] 

Aggregation 7 788 2 [50] 

D31 31 3100 2 [51] 

R15 15 600 2 [51] 

S1 15 50 0 0 2 [52] 

Iris 3 150 4 [53] 

Ionosphere 2 351 34 [53] 

Wine 3 178 13 [53] 

Diabetes 2 768 8 [53] 

Segmentation 7 2130 19 [53] 

Glass 6 214 9 [53] 

WDBC 2 569 30 [53] 

WPBC 2 194 33 [53] 
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dataset is difficult for K-means, even for clustering ensemble al-

gorithms that take K-means as a base partition algorithm. The

Toy problem includes two clusters with different densities. Flame

has two clusters and two noise data points, and is not favoured

by compactness-based or connectivity-based algorithms. The other

four synthetic datasets can be handled relatively easily because the

clusters follow a Gaussian distribution. 

To compare with clustering ensemble algorithms, two well-

known approaches are selected: Link-based Clustering Ensemble

(LCE) [19] and Strehl’s algorithms [25] . The former has three vari-

ants: Weighted Connected-Triple (WCT), Weighted Triple-Quality

(WTQ) and Combined Similarity Measure (CSM). The latter also

has three variants: Cluster-based Similarity Partitioning Algorithm

(CSPA), Hyper Graph Partitioning Algorithm (HGPA), and Meta-

Clustering Algorithm (MCLA). 

4.3. Clustering measures 

To measure the clustering results, we employ three criteria: Hu-

bert’s � statistic [47] , normalised mutual information [25] , and CA

[22] . 
In statistics, a null hypothesis is used to test a parameter

gainst a specific value, but it is expressed in a slightly different

ay [47] . It can also be used to measure a clustering result by test-

ng whether or not the dataset possesses a structure, and Hubert’s

statistic is a typical example [47] . Suppose P ′ = { C ′ 1 , · · · , C ′ 
K ′ } is

he ground truth of X, P = { C 1 , · · · , C K } is a clustering result. Con-

ider a pair ( x i , x j ). Let a denote the number of pairs where the

wo objects of each are in the same cluster with respect to P and

 

′ . Let b denote the number of pairs where the two objects of each

re in the same cluster with respect to P but in different clusters

ith respect to P ′ . Let c denote the number of pairs where the two

bjects of each are in different clusters with respect to P and in the

ame cluster with respect to P ′ . Finally, let d denote the number of

airs where the two objects are in different clusters with respect

o both P and P ′ . Hubert’s � statistic [47] is defined as follows: 

̂ = (Ma − m 1 m 2 ) / 
√ 

(m 1 m 2 − (M − m 1 )(M − m 2 )) ; (23)

here M = a + b + c + d, m 1 = a + b, and m 2 = a + c. 

As mutual information can depict the shared information of a

air of clusterings, the normalised mutual information in [25] is

sually used as an external validity criterion, which is defined as

ollows: 

MI(P, P ′ ) = 

∑ K 
i =1 

∑ K ′ 
j=1 | C i ∩ C ′ 

j 
| log ( 

N| C i ∩ C ′ j | 
(| C i || C ′ j | ) ) √ 

( 
∑ K 

i =1 | C i | log | C i | 
N 

)( 
∑ K ′ 

j=1 | C ′ j | log 
| C ′ 

j 
| 

N 
) 

(24)

here | C | denotes the number of objects in C . 

CA is another external criterion for measuring a clustering re-

ult by computing the error rate [22] . It is defined as follows: 

A (P, P ′ ) = 

1 

N 

∑ 

C i ∈ P 
| C i ∩ mode (C i , P 

′ ) | (25)

here mode (C i , P 
′ ) = arg max C ′ 

j 
∈ P ′ | C i ∩ C ′ 

j 
| . 

.4. Experimental results 

.4.1. Compared to the selected ensemble approaches 

As the 16 datasets in the experiments have labels, the qualities

f all the experimental results are measured by Hubert’s � statis-



C. Zhong, L. Hu and X. Yue et al. / Pattern Recognition 92 (2019) 93–106 101 

Table 3 

The qualities of the clustering results are measured by CA . The highest quality of clustering results in each row is highlighted as the bold 

item(s). The numbers in the brackets are the corresponding standard deviations. 

Dataset Best candidate Clustering ensemble algorithms 

NegMM WCT WTQ CSM CSPA HGPA MCLA 

Pathbased 0.99 0.98 (0.02) 0.92 (0.07) 0.90 (0.07) 0.88 (0.06) 0.93 (0.05) 0.92 (0.01) 0.82 (0.11) 

Spiral 0.66 0.63 (0.03) 0.40 (0.05) 0.41 (0.05) 0.38 (0.03) 0.38 (0.03) 0.60 (0.07) 0.44 (0.09) 

Toy problem 1.00 1.0 0 (0.0 0) 0.79 (0.10) 0.89 (0.11) 0.78 (0.08) 0.76 (0.00) 0.74 (0.00) 0.77 (0.01) 

Flame 0.98 0.98 (0.01) 0.96 (0.02) 0.96 (0.01) 0.95 (0.05) 0.83 (0.01) 0.86 (0.05) 0.84 (0.02) 

Aggregation 1.00 0.99 (0.00) 0.91 (0.01) 0.87 (0.03) 0.91 (0.00) 0.82 (0.02) 0.87 (0.01) 0.84 (0.02) 

D31 0.98 0.98 (0.00) 0.97 (0.00) 0.97 (0.01) 0.97 (0.01) 0.97 (0.00) 0.93 (0.02) 0.98 (0.00) 

R15 1.00 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 0.99 (0.02) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 

S1 1.00 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.97 (0.01) 0.89 (0.07) 0.97 (0.01) 

Iris 0.98 0.96 (0.04) 0.94 (0.04) 0.95 (0.04) 0.91 (0.03) 0.96 ()0.05 0.97 (0.00) 0.96 (0.05) 

Ionosphere 0.88 0.83 (0.06) 0.68 (0.04) 0.71 (0.01) 0.66 (0.03) 0.66 (0.01) 0.68 (0.02) 0.71 (0.04) 

Wine 0.73 0.72 (0.00) 0.72 (0.01) 0.72 (0.02) 0.72 (0.01) 0.71 (0.00) 0.72 (0.00) 0.72 (0.00) 

Diabetes 0.65 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 

Segmentation 0.69 0.64(0.16) 0.69 (0.04) 0.63 (0.02) 0.68 (0.04) 0.69 (0.05) 0.67 (0.05) 0.68 (0.07) 

Glass 0.62 0.62 (0.01) 0.60 (0.01) 0.60 (0.03) 0.61 (0.02) 0.61 (0.01) 0.61 (0.02) 0.58 (0.04) 

WDBC 0.90 0.86 (0.04) 0.73 (0.03) 0.78 (0.02) 0.71 (0.05) 0.76 (0.08) 0.82 (0.00) 0.81 (0.04) 

WPBC 0.76 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 
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ic [47] , normalised mutual information [25] , and CA [22] . In all ex-

eriments, the parameters are set as follows: because clustering re-

ults of each clustering ensemble algorithm are not unique, we run

ach algorithm repeatedly 50 times, and the quality of averages is

resented. The number of clusters for each base partition is 
√ 

N .

he number of the base partitions is set to 500 for NegMM, CSPA,

GPA , and MCLA , and 10 for WCTspec, WTQspec, and CSMspec.

eanwhile, the decay factor parameters DC of CTspec, WTQspec,

nd CSMspec are set to 0.9. The number of the nearest neighbours

s set to 3 for MM 

1 . 

The results measured by CA are shown in Table 3 . In the second

olumn, the best clusterings are selected from the candidates gen-

rated by Algorithm 2 , and the qualities are measured by CA. For

he Path based dataset, the best candidate is similar to the ground

ruth, and the quality of the result of NegMM is better than those

f others. As the cluster structure of this dataset is quite complex,

t can be said that NegMM has the potential capability of dealing

ith datasets with complex structures. 

For the Spiral dataset, even the best candidate is far from the

round truth. This is because the base clusterings are of low qual-

ty when the number of base clusters is set to 
√ 

N , which is not

nough for this link-based dataset. For example, if the number is

et to 2 ∗
√ 

N , the ground truth can be found in the candidates.

ven if the number is 
√ 

N , NegMM produces a better result than

he others. The Toy problem and Flame datasets have arbitrary

hapes and complex structures, and NegMM gives the best clus-

erings. The Aggregation dataset contains two chain-linked Gaus-

ian clusters, but NegMM is robust and outperforms others on this

ataset. For the other three synthetic datasets (D31, R15, and S1),

nly NegMM has the best results simultaneously. 

The proposed NegMM has good performance on Iris, although

GPA provides the best performance. Concerning the Ionosphere

ataset, the best candidate is of high quality. To our knowledge,

here is no clustering ensemble algorithm in the literature that can

roduce clustering with a similar quality on this dataset. NegMM

an find a relatively good clustering from the candidates. For the

ther six real datasets, the only one not favoured by NegMM is

egmentation. 

The results measured by Hubert’s � statistic and NMI are

hown in Tables 4 and 5 , respectively. The evaluations of these

wo measures on the experimental results are similar to that of
1 The Matlab code is available at https://github.com/zhongcaiming/clustering- 

nsemble . 

fi  

o  
A, especially for those clustering with high qualities. For exam-

le, from Tables 3 , 4 and 5 , it can be seen that the three mea-

ures present a similar idea towards the clustering results of the

ight synthetic datasets (except for Spiral), and these seven clus-

ering results generated by NegMM are of high quality. When clus-

ering results are of low quality (for example, those of Spiral and

he eight real datasets), the three measures have significantly dif-

erent views. However, from the number of the best clusterings,

he three measures give the same evaluation result: NegMM out-

erforms the compared state-of-the-art methods. 

To test NegMM extensively, we compare NegMM with the other

ix methods on 160 synthetic datasets 2 . These are listed in Table 6 .

he number of dimensions of the datasets range from 2 to 100, and

he number of clusters ranges from 4 to 40. As the datasets are

enerated with Gaussian and Ellipsoidal cluster generators, some

oisy data may be included. The clustering results are shown in

ig. 6 . 

From this figure, it can be seen that NegMM is better than the

ompared six methods with respect to the three measures, be-

ause in each line chart most of the red line is at the top. In

ig. 6 (a), the clusterings are measured by CA , and NegMM gen-

rates better results than the compared methods on 102 of 160

atasets. In Fig. 6 (b), the clusterings are measured by Hubert’s �

tatistic, and NegMM outperforms the compared methods on 116

f 160 datasets. In Fig. 6 (c), the clusterings are measured by NMI,

nd NegMM also outperforms the compared methods on 116 of

60 datasets. Although Hubert’s � statistic and NMI suggest that

egMM outperforms the compared methods on the same number

f datasets, 4 different ones exist between the two groups of 116

atasets. This means the two measures are similar. 

.4.2. Compared to the selected internal validity indices 

In the above sub-section, the overall performance of the pro-

osed method has been compared to some well-known ensemble

pproaches. In this sub-section, we focus on evaluating the pro-

osed internal validity index MM. As mentioned previously, MM

s designed to measure the clusterings produced by clustering en-

emble algorithms, and it only uses the information of the base

artitions, rather than that of the original dataset. 

For each dataset, the proposed clustering ensemble algorithm

rst produces 50 candidate clusterings, and then selects the final

ne by MM. In the comparison, we measure the candidates by CA
2 https://personalpages.manchester.ac.uk/staff/Julia.Handl/data.tar.gz . 

https://github.com/zhongcaiming/clustering-ensemble
https://personalpages.manchester.ac.uk/staff/Julia.Handl/data.tar.gz
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Table 4 

The qualities of the clustering results are measured by Hubert’s �statistic . The highest quality of clustering results in each row is high- 

lighted as the bold item(s). The numbers in the brackets are the corresponding standard deviations. 

Dataset Best candidate Clustering ensemble algorithms 

NegMM WCT WTQ CSM CSPA HGPA MCLA 

Path based 0.96 0.95 (0.01) 0.80 (0.02) 0.75 (0.02) 0.70 (0.02) 0.80 (0.05) 0.80 (0.01) 0.60 (0.11) 

Spiral 0.32 0.23 (0.05) 0.03 (0.05) 0.02 (0.05) 0.01 (0.03) 0.01 (0.03) 0.22 (0.07) 0.06 (0.09) 

Toy problem 1.00 1.0 0 (0.0 0) 0.23 (0.10) 0.57 (0.03) 0.15 (0.05) 0.26 (0.00) 0.18 (0.00) 0.30 (0.01) 

Flame 0.96 0.92 (0.01) 0.86 (0.02) 0.85 (0.01) 0.81 (0.05) 0.42 (0.01) 0.52 (0.05) 0.47 (0.02) 

Aggregation 1.00 0.99 (0.00) 0.67 (0.01) 0.59 (0.03) 0.67 (0.00) 0.54 (0.02) 0.64 (0.01) 0.56 (0.02) 

D31 0.97 0.95 (0.00) 0.94 (0.00) 0.94 (0.01) 0.94 (0.01) 0.95 (0.00) 0.88 (0.02) 0.95 (0.00) 

R15 1.00 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 0.99 (0.02) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 

S1 1.00 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.93 (0.01) 0.83 (0.07) 0.94 (0.01) 

Iris 0.97 0.89 (0.04) 0.83 (0.04) 0.86 (0.04) 0.78 (0.03) 0.90 (0.05) 0.91 (0.00) 0.89 (0.05) 

Ionosphere 0.35 0.23 (0.06) 0.12 (0.04) 0.17 (0.01) 0.07 (0.03) 0.11 (0.01) 0.13 (0.02) 0.17 (0.04) 

Wine 0.50 0.40 (0.00) 0.00 (0.01) 0.00 (0.02) 0.00 (0.01) 0.39 (0.00) 0.40 (0.00) 0.40 (0.00) 

Diabetes 0.05 0.02 (0.00) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 

Segmentation 0.50 0.47(0.16) 0.54 (0.04) 0.47 (0.02) 0.53 (0.04) 0.53 (0.05) 0.51 (0.05) 0.51 (0.07) 

Glass 0.31 0.23 (0.01) 0.18 (0.01) 0.19 (0.03) 0.18 (0.02) 0.18 (0.01) 0.19 (0.02) 0.17 (0.04) 

WDBC 0.69 0.63 (0.04) 0.21 (0.03) 0.32 (0.02) 0.18 (0.05) 0.27 (0.08) 0.42 (0.00) 0.39 (0.04) 

WPBC 0.01 0.0 0 (0.0 0) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.0 0 (0.0 0) 0.01 (0.00) 0.02 (0.00) 

Table 5 

The qualities of the clustering results are measured by NMI . The highest quality of clustering results in each row is highlighted as the bold 

item(s). The numbers in the brackets are the corresponding standard deviations. 

Dataset Best candidate Clustering ensemble algorithms 

NegMM WCT WTQ CSM CSPA HGPA MCLA 

Path based 0.95 0.93 (0.01) 0.79 (0.02) 0.80 (0.01) 0.70 (0.02) 0.56 (0.02) 0.58 (0.01) 0.56 (0.10) 

Spiral 0.35 0.34 (0.03) 0.03 (0.04) 0.02 (0.04) 0.01 (0.03) 0.56 (0.03) 0.56 (0.06) 0.55 (0.09) 

Toy problem 1.00 1.0 0 (0.0 0) 0.28 (0.11) 0.57 (0.03) 0.36 (0.05) 0.47 (0.01) 0.48 (0.00) 0.47 (0.01) 

Flame 0.90 0.86 (0.01) 0.83 (0.02) 0.80 (0.01) 0.79 (0.03) 0.45 (0.01) 0.46 (0.05) 0.45 (0.02) 

Aggregation 1.00 0.99 (0.00) 0.83 (0.01) 0.79 (0.03) 0.83 (0.00) 0.69 (0.02) 0.71 (0.01) 0.71 (0.02) 

D31 0.97 0.97 (0.00) 0.96 (0.00) 0.96 (0.01) 0.96 (0.01) 0.91 (0.00) 0.90 (0.02) 0.92 (0.00) 

R15 1.00 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 0.99 (0.02) 0.93 (0.00) 0.93 (0.00) 0.93 (0.00) 

S1 1.00 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.80 (0.01) 0.78 (0.07) 0.81 (0.01) 

Iris 0.90 0.88 (0.04) 0.85 (0.04) 0.86 (0.04) 0.81 (0.03) 0.64 (0.05) 0.65(0.00) 0.65 (0.05) 

Ionosphere 0.30 0.18 (0.06) 0.13 (0.04) 0.13 (0.01) 0.11 (0.03) 0.49 (0.01) 0.43 (0.02) 0.48 (0.04) 

Wine 0.50 0.40 (0.00) 0.39 (0.01) 0.38 (0.02) 0.36 (0.01) 0.62 (0.00) 0.65 (0.00) 0.65 (0.00) 

Diabetes 0.05 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.46 (0.00) 0.46 (0.00) 0.46 (0.00) 

Segmentation 0.64 0.62(0.16) 0.60 (0.04) 0.61 (0.02) 0.57 (0.04) 0.68 (0.05) 0.68 (0.05) 0.67 (0.07) 

Glass 0.39 0.37 (0.01) 0.33 (0.01) 0.32 (0.03) 0.33 (0.02) 0.73 (0.01) 0.72 (0.02) 0.75 (0.04) 

WDBC 0.62 0.54 (0.04) 0.29 (0.03) 0.37 (0.02) 0.27 (0.05) 0.45 (0.08) 0.47 (0.00) 0.46 (0.04) 

WPBC 0.01 0.0 0 (0.0 0) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.48 (0.00) 0.50 (0.00) 0.48(0.00) 
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Fig. 6. Clustering results on 160 synthetic datasets. 
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C  
as the baseline, and use MM and the 7 indices in Table 1 to select

the final clusterings. The qualities of the selected clusterings are

measured with CA. The results are shown in Table 7 , where the

number of the nearest neighbours is set to 3 for both MM and

CVNN. 

In Table 7 , the second column is the same as that in Table 3 ,

and is regarded as the baseline. The qualities of this are better than

or equal to those of the selected clusterings by the eight internal

indices. Among the 8 indices, MM has the best performance on 14

of 16 datasets, while the other indices have the best performance

on less than or equal to 9 datasets. 
For the Aggregation dataset (D31, R15, S1, Diabetes, and WPBC),

he 8 tested internal validity indices have the same perfor-

ance, and the best clusterings are detected. However, for these 6

atasets, the quality differences between the worst and best candi-

ates generated by Algorithm 2 are very small. This means the per-

ormance of the internal validity indices cannot be discriminated

y the 6 datasets. 

For the Path based dataset, there are six indices: MM, Silhou-

tte, DB, Dunn, S_Dbw, and I . These can almost distinguish the

est clusterings, which represent the clustering structure; however,

H and CVNN cannot. For Spiral, three indices find the clusterings
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Table 6 

The name list of 160 synthetic datasets. 

No. Dataset name No. Dataset name No. Dataset name No. Dataset name 

1 10d-10c-no0.dat 41 2d-10c-no0.dat 81 ellipsoid.100d10c.1.dat 121 ellipsoid.50d10c.1.dat 

2 10d-10c-no1.dat 42 2d-10c-no1.dat 82 ellipsoid.100d10c.10.dat 122 ellipsoid.50d10c.10.dat 

3 10d-10c-no2.dat 43 2d-10c-no2.dat 83 ellipsoid.100d10c.2.dat 123 ellipsoid.50d10c.2.dat 

4 10d-10c-no3.dat 44 2d-10c-no3.dat 84 ellipsoid.100d10c.3.dat 124 ellipsoid.50d10c.3.dat 

5 10d-10c-no4.dat 45 2d-10c-no4.dat 85 ellipsoid.100d10c.4.dat 125 ellipsoid.50d10c.4.dat 

6 10d-10c-no5.dat 46 2d-10c-no5.dat 86 ellipsoid.100d10c.5.dat 126 ellipsoid.50d10c.5.dat 

7 10d-10c-no6.dat 47 2d-10c-no6.dat 87 ellipsoid.100d10c.6.dat 127 ellipsoid.50d10c.6.dat 

8 10d-10c-no7.dat 48 2d-10c-no7.dat 88 ellipsoid.100d10c.7.dat 128 ellipsoid.50d10c.7.dat 

9 10d-10c-no8.dat 49 2d-10c-no8.dat 89 ellipsoid.100d10c.8.dat 129 ellipsoid.50d10c.8.dat 

10 10d-10c-no9.dat 50 2d-10c-no9.dat 90 ellipsoid.100d10c.9.dat 130 ellipsoid.50d10c.9.dat 

11 10d-20c-no0.dat 51 2d-20c-no0.dat 91 ellipsoid.100d20c.1.dat 131 ellipsoid.50d20c.1.dat 

12 10d-20c-no1.dat 52 2d-20c-no1.dat 92 ellipsoid.100d20c.10.dat 132 ellipsoid.50d20c.10.dat 

13 10d-20c-no2.dat 53 2d-20c-no2.dat 93 ellipsoid.100d20c.2.dat 133 ellipsoid.50d20c.2.dat 

14 10d-20c-no3.dat 54 2d-20c-no3.dat 94 ellipsoid.100d20c.3.dat 134 ellipsoid.50d20c.3.dat 

15 10d-20c-no4.dat 55 2d-20c-no4.dat 95 ellipsoid.100d20c.4.dat 135 ellipsoid.50d20c.4.dat 

16 10d-20c-no5.dat 56 2d-20c-no5.dat 96 ellipsoid.100d20c.5.dat 136 ellipsoid.50d20c.5.dat 

17 10d-20c-no6.dat 57 2d-20c-no6.dat 97 ellipsoid.100d20c.6.dat 137 ellipsoid.50d20c.6.dat 

18 10d-20c-no7.dat 58 2d-20c-no7.dat 98 ellipsoid.100d20c.7.dat 138 ellipsoid.50d20c.7.dat 

19 10d-20c-no8.dat 59 2d-20c-no8.dat 99 ellipsoid.100d20c.8.dat 139 ellipsoid.50d20c.8.dat 

20 10d-20c-no9.dat 60 2d-20c-no9.dat 100 ellipsoid.100d20c.9.dat 140 ellipsoid.50d20c.9.dat 

21 10d-40c-no0.dat 61 2d-40c-no0.dat 101 ellipsoid.100d40c.1.dat 141 ellipsoid.50d40c.1.dat 

22 10d-40c-no1.dat 62 2d-40c-no1.dat 102 ellipsoid.100d40c.10.dat 142 ellipsoid.50d40c.10.dat 

23 10d-40c-no2.dat 63 2d-40c-no2.dat 103 ellipsoid.100d40c.2.dat 143 ellipsoid.50d40c.2.dat 

24 10d-40c-no3.dat 64 2d-40c-no3.dat 104 ellipsoid.100d40c.3.dat 144 ellipsoid.50d40c.3.dat 

25 10d-40c-no4.dat 65 2d-40c-no4.dat 105 ellipsoid.100d40c.4.dat 145 ellipsoid.50d40c.4.dat 

26 10d-40c-no5.dat 66 2d-40c-no5.dat 106 ellipsoid.100d40c.5.dat 146 ellipsoid.50d40c.5.dat 

27 10d-40c-no6.dat 67 2d-40c-no6.dat 107 ellipsoid.100d40c.6.dat 147 ellipsoid.50d40c.6.dat 

28 10d-40c-no7.dat 68 2d-40c-no7.dat 108 ellipsoid.100d40c.7.dat 148 ellipsoid.50d40c.7.dat 

29 10d-40c-no8.dat 69 2d-40c-no8.dat 109 ellipsoid.100d40c.8.dat 149 ellipsoid.50d40c.8.dat 

30 10d-40c-no9.dat 70 2d-40c-no9.dat 110 ellipsoid.100d40c.9.dat 150 ellipsoid.50d40c.9.dat 

31 10d-4c-no0.dat 71 2d-4c-no0.dat 111 ellipsoid.100d4c.1.dat 151 ellipsoid.50d4c.1.dat 

32 10d-4c-no1.dat 72 2d-4c-no1.dat 112 ellipsoid.100d4c.10.dat 152 ellipsoid.50d4c.10.dat 

33 10d-4c-no2.dat 73 2d-4c-no2.dat 113 ellipsoid.100d4c.2.dat 153 ellipsoid.50d4c.2.dat 

34 10d-4c-no3.dat 74 2d-4c-no3.dat 114 ellipsoid.100d4c.3.dat 154 ellipsoid.50d4c.3.dat 

35 10d-4c-no4.dat 75 2d-4c-no4.dat 115 ellipsoid.100d4c.4.dat 155 ellipsoid.50d4c.4.dat 

36 10d-4c-no5.dat 76 2d-4c-no5.dat 116 ellipsoid.100d4c.5.dat 156 ellipsoid.50d4c.5.dat 

37 10d-4c-no6.dat 77 2d-4c-no6.dat 117 ellipsoid.100d4c.6.dat 157 ellipsoid.50d4c.6.dat 

38 10d-4c-no7.dat 78 2d-4c-no7.dat 118 ellipsoid.100d4c.7.dat 158 ellipsoid.50d4c.7.dat 

39 10d-4c-no8.dat 79 2d-4c-no8.dat 119 ellipsoid.100d4c.8.dat 159 ellipsoid.50d4c.8.dat 

40 10d-4c-no9.dat 80 2d-4c-no9.dat 120 ellipsoid.100d4c.9.dat 160 ellipsoid.50d4c.9.dat 

Table 7 

The clusterings are selected by different internal validity indices from the candidates produced by Algorithm 2 , and the qualities of the selected cluster- 

ing are measured by CA. The highest quality of clustering results in each row is highlighted as the bold item(s). The numbers in the brackets are the 

corresponding standard deviations. 

Dataset Best candidate Internal validity indices 

MM Silhouette DB CH Dunn S_Dbw CVNN I

Path based 0.99 (0.01) 0.98 (0.02) 0.98 (0.03) 0.97 (0.04) 0.89 (0.13) 0.98 (0.01) 0.98 (0.02) 0.93 (0.04) 0.98 (0.03) 

Spiral 0.66 (0.01) 0.63 (0.03) 0.54 (0.05) 0.50 (0.03) 0.58 (0.04) 0.52 (0.04) 0.62 (0.06) 0.64 (0.04) 0.53 (0.04) 

Toy problem 1.0 0 (0.0 0) 1.0 0 (0.0 0) 0.88 (0.05) 0.90 (0.07) 0.85 (0.08) 0.83 (0.05) 0.91 (0.06) 0.91 (0.06) 0.90 (0.07) 

Flame 0.98 (0.00) 0.98 (0.00) 0.62 (0.01) 0.62 (0.01) 0.88 (0.12) 0.62 (0.01) 0.98 (0.00) 0.74 (0.04) 0.62 (0.01) 

Aggregation 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 

D31 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 

R15 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 1.0 0 (0.0 0) 

S1 1.0 0 (0.0 0) 0.99 (0.00) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 

Iris 0.98 (0.00) 0.96 (0.04) 0.87 (0.06) 0.88 (0.05) 0.88 (0.04) 0.86 (0.06) 0.87 (0.06) 0.89 (0.07) 0.87 (0.07) 

Ionosphere 0.88 (0.01) 0.83 (0.06) 0.70 (0.06) 0.72 (0.09) 0.66 (0.01) 0.67 (0.06) 0.67 (0.05) 0.80 (0.09) 0.72 (0.09) 

Wine 0.73 (0.00) 0.72 (0.00) 0.72 (0.01) 0.71 (0.01) 0.72 (0.00) 0.71 (0.01) 0.72 (0.01) 0.71 (0.02) 0.72 (0.01) 

Diabetes 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 0.65 (0.00) 

Segmentation 0.69 (0.01) 0.64 (0.01) 0.64 (0.01) 0.64 (0.02) 0.60 (0.01) 0.63 (0.01) 0.63 (0.01) 0.63 (0.01) 0.62 (0.01) 

Glass 0.62 (0.00) 0.62 (0.00) 0.61 (0.00) 0.61 (0.00) 0.60 (0.01) 0.61 (0.01) 0.60 (0.02) 0.60 (0.01) 0.61 (0.01) 

WDBC 0.90 (0.02) 0.86 (0.04) 0.82 (0.02) 0.82 (0.02) 0.86 (0.04) 0.82 (0.02) 0.88 (0.01) 0.90 (0.02) 0.82 (0.02) 

WPBC 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 0.76 (0.00) 

t  

p  

a  

W

4

 

b  
hat are close to the best. For Flame, index, MM, and S_Dbw dis-

lay a good performance. For the Toy problem, Iris, Ionosphere,

nd Glass datasets, only MM can find the best clustering. For

DBC, MM is slightly worse than CVNN and S_Dbw. 
.5. Number of nearest neighbours for MM and CVNN 

In the proposed internal validity index MM, the nearest neigh-

ours are used to depict the density information. However, how to
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Fig. 7. Index MM and CVNN are tested with different numbers (2–10) of nearest neighbours. 
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select a suitable number of the nearest neighbours is not a triv-

ial task. In fact, index CVNN has the same problem. In this sub-

section, we first test how the number of the nearest neighbours

affects the performance of MM and CVNN, and then suggest a pre-

ferred number. 

Three datasets are selected to test the effect of the number of

nearest neighbours: Path based, Toy problem, and Flame. These are

selected because for each of these datasets, the difference in CA

values between the best and the worst candidate clustering is rela-

tively significant; hence, the effect of different numbers on nearest

neighbours could be disclosed more easily. 

For each dataset, 2 to 10 nearest neighbours are tested, and

NegMM runs 10 times for each one. The results are shown in Fig. 7 .

From the figure, different numbers of nearest neighbours have a

slight effect on the performance of the MM index. When the num-

ber of the nearest neighbours is set to 3, the performance of index

MM is relatively better. However, for index CVNN, the effects are

more obvious compared to MM. For example, using the Path based

dataset, when the number is changed from 2 to 10 the biggest dif-

ference (clustering 6) of CA is less than 0.01 for MM, but almost

0.15 for CVNN. Similarly, when the number is set to 2 or 3, the

performance of CVNN is relatively better. Therefore, in the experi-

ments we set the number of nearest neighbours to 3. 

4.6. Scalability of the proposed method 

From the analysis of the computational complexity in

Section 3.6 , we can see the scalability of the proposed method is

determined by two main factors: the scalability of both Ncut and

MST. In the literature, the scalability of the two problems have

been intensively studied [41,42,54] . 

In [41] , Cai and Chen proposed a landmark-based spectral

clustering, in which p ( � n ) representative objects are selected as

the landmarks and represent the original objects as sparse lin-

ear combinations of these landmarks. The spectral embedding of

the dataset can then be efficiently obtained with the landmark-

based representation. The computational cost is linear with N . Jia

et al. presented an approximate normalised cut without the Eigen-

decomposition method [54] , of which the computational complex-

ity is O (m 

3 + m 

2 ∗ N + m ∗ N ∗ K ∗ t) , where m � N , and t is the
aximum iteration number. Therefore, Ncut can be speeded up to

ess than O ( N 

2 ). 

Zhong et al. employed a divide-and-conquer strategy to design

 fast MST method [42] , and its time complexity is O ( N 

1.5 ). 

It is evident that the proposed method in this paper can scale

p to large-scale datasets if the above methods are used. 

. Conclusion 

To improve clustering performance, co-association matrix-based

lustering ensemble algorithms usually refine this matrix by min-

ng some hidden information of the base partitions and fusing

hem back to the matrix. In this paper, we aimed to achieve the

ame goal, but approached it from the opposite direction, to re-

ove some information from the co-association matrix. In fact,

dding extra positive information into the matrix or removing neg-

tive evidences out of the matrix has the same effect; both ap-

roaches can make the matrix depict the clustering structure ac-

urately. 

As a co-association matrix describes the frequency of a pair be-

ng in the same base cluster, adding positive information means in-

reasing the frequency of a pair of data points that are in the same

round truth cluster, while removing negative evidences means de-

reasing the frequency of a pair of data points that are in different

round truth clusters. 

Although it is difficult to find the negative evidences directly, it

an be observed that negative evidences have relatively low values

n the co-association matrix. Therefore, an ensemble scheme is de-

igned in this paper to generate multiple clustering candidates by

etting multiple level frequencies of the co-association matrix to

ero. 

When the multiple clustering candidates are generated, the best

ne should be selected as the final clustering. This can only be

chieved by employing a certain internal validity index. Because

n some clustering ensemble scenarios the original dataset infor-

ation is not available, we design an internal validity index MM,

hich only uses the information of the co-association matrix (but

ot of the original dataset). The experimental results indicate that

he proposed method is effective. 
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Future work could be focused on the relation between remov-

ng negative evidences and data transformation, and simultane-

usly considering removing negative and adding positive evidences

n the same ensemble scheme. For the former topic, removing

ultiple level frequencies is similar to tuning the parameters in

 Gaussian transformation, as both change the nearest neighbour

ound of a data point. For the latter topic, the hybrid of removing

egative and adding positive evidences could intuitively be more

ffective for detecting the clustering structure. 

Robustness against noise is also an important performance met-

ic of a clustering algorithm [55] . However, for a clustering ensem-

le scheme, this performance is almost determined by the base

artitions. While the main contribution of this paper is to claim

hat removal of negative information from the co-association ma-

rix may lead to a good clustering, in future work we will focus on

obustness against noise for a clustering ensemble. 
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