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Recently, many interpretable clustering algorithms have been proposed, which focus on charac-
terizing the clustering outcome in terms of explainable models such as trees and rules. However, 
existing solutions are mainly developed for handling standard vectorial data and how to obtain 
interpretable clustering results for complicated non-vector data such as sequences and graphs is 
still in the infant stage. In this paper, we present a significance-based interpretable clustering al-
gorithm for discrete sequences, which has the following key features. Firstly, instead of using a 
third-party clustering method to obtain the initial clusters, we directly extract cluster-critical se-
quential patterns to describe potential clusters. Secondly, without needing to specify the number 
of clusters, we guide the growth of the decision tree through a hypothesis testing procedure. As a 
result, not only the final clustering result is explainable but also the tree construction process is 
statistically interpretable. Experimental results on real-world sequential data sets show that our 
algorithm achieves comparable performance to state-of-the-art methods in both cluster quality 
and interpretability.

1. Introduction

Cluster analysis is a fundamental research issue in the field of machine learning and data mining. The specific goal of a clustering 
algorithm is to find clusters of data samples, where samples within each cluster are more similar to each other while samples from 
different clusters should be as dissimilar as possible. For decades, numerous clustering algorithms have been developed from different 
viewpoints based on different problem formulations [1].

Standard clustering algorithms are developed for partitioning vectorial data into different groups, where each sample in the data 
set is characterized by a fixed number of features. However, in many real applications, we have to conduct cluster analysis on more 
complicated non-vectorial data types such as sequences and graphs. In this paper, we focus on the discrete sequence clustering 
problem, where each sequence in the sequential data set is composed of an ordered list of items from an alphabet. Such sequence 
clustering algorithms are highly demanded in many fields such as bioinformatics [2] and process mining [3].

To date, many fast and accurate clustering algorithms for discrete sequences have been developed (e.g. [4,5]). These clustering 
algorithms can be categorized into different classes according to their underlying algorithmic principles: feature-based algorithms, 
hierarchical algorithms, partitional algorithms and model-based algorithms. The basic ideas and recent advances for different types 
of clustering methods would be introduced and discussed in the related work section. However, due to the discrete nature and the 
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complex order-related semantics of sequences, current methods still lack a clear and direct way to produce final clustering results that 
are easy to understand. Here we would like to re-emphasize the following fact [6]: existing sequence clustering algorithms mainly 
focus on how to yield an accurate clustering outcome quickly, ignoring the interpretability issue of clusters. In other words, explaining 
why a set of sequences forms a cluster and characterizing each cluster in a human-understandable manner remains an open issue.

More recently, much attention has been paid to the development of interpretable clustering methods for standard vectorial data 
(e.g. [7,8]). Essentially, these methods try to employ interpretable models such as decision trees and rules to explain and characterize 
clusters. The interpretable clustering model is constructed based on two different strategies. On one hand, we can first run an existing 
clustering method and then use the clustering output as input to guide the generation of explainable models. On the other hand, 
without the reliance on a third-party clustering method, we may construct the interpretable clustering model from the target data set 
directly.

Despite the success of recent advances in interpretable clustering algorithms, transferring these methods to the domain of sequence 
clustering remains a non-trivial task for the following reasons. Firstly, since no explicit features are present in the sequential data, the 
extraction of interpretable and cluster-critical features is a challenging issue. Secondly, the potential feature space for sequential data 
is vast, which poses challenges for constructing the subsequent interpretable clustering model. Finally, due to the discrete nature of 
sequences, those existing interpretable algorithms for numeric vector data cannot be directly deployed.

To solve the interpretable sequence clustering issue, we have made a pilot study in [6]. In [6], the sequential patterns are employed 
as features and the decision tree is chosen as the interpretable clustering model for explaining clusters. The proposed algorithm 
iteratively performs discriminative pattern mining and tree growth to obtain a clustering decision tree. However, several limitations 
remain that need to be addressed, as discussed below.

First of all, the algorithm in [6] implicitly requires a third-party clustering method to guide the decision tree construction. The 
use of different clustering algorithms may affect the final clustering result. Secondly, the number of ground-truth clusters should be 
specified as input, which is typically unknown in practice. Finally, the algorithm in [6] can only ensure that the clustering result 
is explainable in terms of decision trees, failing to guarantee the interpretability of clustering process. That is, the split or non-split 
decision at each node is not statistically explainable.

Motivated by the above observations, we present a new tree-based interpretable clustering algorithm for sequences, which is named 
as SigISC (Significance-based Interpretable Sequence Clustering). To alleviate the drawbacks of existing algorithms, the following 
novel ideas are introduced in SigISC. First, a new sequential pattern mining algorithm is presented, which is capable of extracting 
sequential patterns that are highly correlated with the underlying clustering structure. Second, the hypothesis testing method is 
employed for assessing the goodness of candidate split point, enabling that the split or non-split decision is at least explainable in 
a statistical sense. Finally, the significance testing results, expressed as 𝑝-values at each node, allow us to automatically determine 
whether a node should be further divided during the tree growth process. Therefore, our algorithm is able to determine the number 
of clusters adaptively without the need to use the ground-truth cluster number as input.

In summary, the main contributions of this paper can be summarized as follows:

• We present the first significance-based interpretable clustering algorithm for sequences, which provides a statistically explainable 
split decision and automatically determines the number of clusters.

• We propose a new cluster-critical pattern mining algorithm that identifies sequential patterns closely related to the clustering 
task. Moreover, this algorithm can be used as a general feature extraction method in the context of sequence clustering.

• Extensive experiments on real sequential data sets show that our method can achieve comparable performance to non-
interpretable sequence clustering methods. More importantly, it offers several advantages over existing interpretable clustering 
methods.

The remainder of this paper is organized as follows. Section 2 summarizes and discusses related methods. Section 3 presents the 
details of our proposed clustering algorithm. Section 4 presents the empirical results on real sequential data sets. Section 5 concludes 
the paper.

2. Related work

Since there is only a piece of work that focuses on interpretable sequence clustering, we will mainly discuss related methods from 
two domains: discrete sequence clustering and interpretable clustering. Moreover, some discussions on significance-based cluster 
analysis would be provided as well.

2.1. Sequence clustering

As briefly mentioned in the introduction, existing sequence clustering methods can be broadly categorized into four types, as 
elaborated below.

The feature/pattern-based method is composed of two steps. In the first step, we first transform sequences into fixed-length 
vectors via a feature extraction method. The most widely used feature extraction methods include sequential pattern mining algorithms 
[9,10] and sequence embedding approaches [11,12]. It is easy to see that the interpretability of sequential patterns (i.e., subsequences) 
is better than that of embedded vectors, since the latter do not have explicitly understandable features that correspond to the original 
samples. After the transformation, we can employ a standard vectorial data clustering algorithm such as 𝑘-means to obtain the final 
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clustering result. Hence, to produce interpretable clustering outcomes, we may apply existing interpretable clustering algorithms to 
the transformed vector data. In the experiment section, we will utilize such a strategy as the baseline to demonstrate the effectiveness 
of both our pattern mining algorithm and the significance-based tree construction method.

The hierarchical method follows the popular hierarchical clustering framework, employing either divisive or agglomerative 
heuristics to generate a dendrogram. To apply such a general framework to the sequence clustering issue, we need to choose a proper 
distance function to measure the dissimilarity between two sequences [13,14]. Note that the hierarchical method will also generate 
a tree structure, however, its interpretability is insufficient. This is primarily because (1) the tree is large, consisting of 𝑛 leaf nodes 
(where 𝑛 is the number of sequences in the data set), and (2) providing concise explanations for each cluster is challenging.

The partitional method takes cluster assignment identifiers as variables and tries to minimize an objective function so as to 
directly output the cluster result [15,5]. Note that although decision trees are used in [4], the decision tree is primarily employed for 
generating initial partitions, rather than for producing final interpretable clustering results. In other words, each decision tree can be 
very large in size and less accurate. Accordingly, the final random forest cannot be employed as an interpretable clustering model. 
The MinDL method [16] can be viewed as an interpretable clustering method for sequences in the sense that it provides a single 
pattern representation for each cluster. However, such a pattern is the one with the minimum sum of edit distances to all sequences 
in the cluster. In other words, although it can be considered a “prototype-based” interpretable clustering method, its interpretability 
is less intuitive than ours, where each pattern is either contained within sequences in a cluster as a subsequence or not. In addition, 
the MinDL algorithm usually reports a large number of clusters even after tuning its hyperparameters manually.

The model-based method typically assumes a finite mixture of probability distributions for the sequential data. The most popular 
models in the literature are Markov models [17,18] and Hidden Markov Models (HMM) [19]. We can determine the model structure 
(e.g., the number of hidden states in an HMM) using model selection techniques and estimate parameters with the maximum likelihood 
estimation algorithms. Such model-based approaches do provide a probabilistic explanation on why certain sequences are allocated 
to their designated cluster. However, it is generally not intuitive or easy for end users to understand.

2.2. Interpretable clustering

Recently, interpretable cluster analysis has gained much attention in the field of machine learning. In addition to clustering 
accuracy, interpretable clustering methods aim to provide a concise, human-understandable explanation of the meaning of each 
cluster. To date, many interpretable clustering algorithms have been proposed for handling standard vectorial data. Essentially, 
research efforts towards this direction can be categorized into different classes according to the interpretable model employed. 
Generally, the most widely used models include rules [20], decision trees [21], and geometric boundaries such as hyper-rectangles 
[22], hypercubes [23], polyhedra [24], and polyhedron [25]. A detailed comparison and systematic categorization of many existing 
interpretable clustering methods can be found in a recent survey [26].

The decision tree [27,8] is probably the most popular model in the literature because the path from the root to each leaf node 
concisely describes why samples are allocated to the corresponding cluster. Moreover, the decision tree can provide a set of non-
overlapping clusters and each sample will be assigned to only one cluster. Since this paper also adopts the decision tree as the 
interpretable clustering model, the following paragraphs will further focus on the discussion of tree-based interpretable clustering 
methods.

To construct a decision tree for forming and explaining clusters, there are typically two strategies. One strategy is to first utilize 
an existing non-interpretable clustering algorithm to obtain an initial clustering result. Then, the cluster identifier for each sample 
can be used to supervise the decision tree construction procedure (e.g. [27,28]). Another strategy is to build the decision tree in 
an unsupervised manner without relying on a third-party clustering algorithm. The basic idea is to formulate the tree construction 
problem as an optimization problem (e.g. [8,29]). To obtain the solution, both heuristic algorithms and methods that can approximate 
the global optimum have been developed.

Note that all existing tree-based interpretable clustering algorithms focus on tackling standard vectorial data [7,30]. One exception 
is the proposed method in [6], which aims at constructing an unsupervised decision tree for the purpose of interpretable cluster 
analysis on sequential data. However, just as we mentioned in the introduction, the algorithm in [6] still has several drawbacks. 
More precisely, it needs to know the number of ground-truth clusters and the split/non-split decision at each node is not statistically 
interpretable. To alleviate these issues, a new interpretable clustering algorithm will be developed in this paper.

2.3. Significance-based clustering

In the literature on cluster analysis, researchers typically adopt an optimization-based approach to solve the clustering problem, 
where the division of samples into clusters is formulated as an optimization problem. However, optimization-based clustering algo-
rithms can always report a set of clusters, failing to guarantee that the corresponding clustering result is statistically meaningful. 
Building on this observation, researchers have started developing algorithms that address cluster analysis from a significance testing 
perspective (e.g., [31,32]).

It is important to note that these significance-based clustering algorithms primarily focus on vector data. To date, no significance-
based clustering algorithms have been developed for discrete sequences. Therefore, from this perspective, the method proposed in 
this paper is also novel.
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Fig. 1. The workflow of SigISC. It is mainly composed of two key steps: (1) Extracting cluster-critical sequential patterns under multiple constraints and (2) Constructing 
clustering decision trees via hypothesis testing.

3. Method

3.1. An overview of the algorithm

In order to effectively conduct interpretable cluster analysis via decision tree on a given sequential dataset, we first need to solve 
two issues: (1) what is employed to serve as the splitting point and (2) how to evaluate the goodness of each candidate splitting point? 
For the first issue, we choose the sequential pattern as the splitting point during decision tree construction since such patterns are easy 
to understand by end-users. Since cluster analysis is an unsupervised machine learning issue, the cluster identifier of each sequence 
is unknown, we have to identify some substitutes to characterize clusters in order to assess candidate splitting points. That is, to 
tackle the second issue, we try to identify a set of sequential patterns that are potentially correlated with different clusters. Once we 
have such a cluster-critical pattern set, one candidate splitting point can be evaluated based on its correlation with all cluster-critical 
patterns.

Hence, our algorithm consists of two steps: extracting cluster-critical sequential patterns and constructing clustering decision 
trees. In the pattern extraction procedure, we extract a series of sequential patterns under multiple constraints. These constraints are 
imposed in order to obtain a concise and non-redundant pattern set with the hope that each pattern is positively correlated with at 
least one underlying cluster. In the tree construction procedure, we take the pattern set in the previous step as the candidate splitting 
point set. During the recursive decision tree construction process, if each pattern is regarded as a binary variable, then the problem 
is to build an unsupervised decision tree from a categorical data set in which each feature only takes two values. To evaluate each 
pattern-based splitting point, we employ the chi-squared test to assess its correlation with all remaining patterns in terms of p-values. 
To obtain a consensus p-value, we can employ the p-value combination method in meta analysis or use the sum of chi-squared statistics 
under the independence assumption. The pattern with the smallest p-value will be employed as the splitting point for dividing the 
sequential data set into two subsets. The workflow of SigISC is summarized in Fig. 1.

3.2. Extracting cluster-critical sequential patterns

3.2.1. What are cluster-critical sequential patterns?

Since the underlying clusters are unknown, it is a quite challenging task to evaluate if one pattern is associated with the cluster 
identifier variable. Under the assumption that the sequential data set is composed of at least two clusters, it is reasonable to claim 
that such patterns should meet at least the following constraints:

• Firstly, such a pattern should be frequent. If the data set can be divided into several distinct clusters, then sequential patterns that 
occur frequently in each cluster can be observed. This is because sequences in each cluster should be similar to each other, leading 
to the generation of multiple frequent sequential patterns with respect to each cluster. Therefore, a cluster-critical sequential 
pattern should be a frequent one whose frequency is no less than a minimum support threshold.

• Secondly, such a pattern must not be too frequent. Since sequences from different clusters are quite dissimilar, one cluster-
critical sequential pattern should only appear in one cluster in an ideal case. That is, if a sequential pattern occurs in most of the 
sequences, then it is unable to distinguish different clusters. Therefore, the target sequential pattern should be no larger than a 
maximum support threshold at the same time.
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Algorithm 1 Extracting Cluster-Critical Sequential Patterns.
Input: A sequential dataset 𝑆 , the pattern length 𝑘 and a percentage parameter 𝑓 .
Output: A sequential pattern set 𝑃
1: 𝑃 = all patterns of length 𝑘 with non-zero support 
2: 𝐶 = distinct support values of patterns in 𝑃 are sorted in a non-decreasing order 
3: Let 𝑢 be the position of support value that is nearest to 𝑛∕2 in 𝐶
4: Set maximal support threshold 𝑚𝑎𝑥𝑆 = 𝐶[𝑢]
5: Set minimal support threshold 𝑚𝑖𝑛𝑆 = 2
6: if 𝑢− 𝑓 ∗ |𝐶| > 0 then

7: 𝑚𝑖𝑛𝑆 = 𝐶[𝑢− 𝑓 ∗ |𝐶|]
8: end if

9: 𝑃 = retain only patterns in 𝑃 whose supports are within [𝑚𝑖𝑛𝑆,𝑚𝑎𝑥𝑆]
10: Sort patterns in 𝑃 in a non-increasing order of supports 
11: for 𝑖 = 1 to |𝑃 | do

12: for 𝑗 = 𝑖+ 1 to |𝑃 | do

13: if 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)< 2 then delete the 𝑖-th pattern from 𝑃
14: end if

15: end for

16: end for

17: if NOT all edit distances among patterns are 𝑘 then

18: Remove patterns from 𝑃 whose edit distances to all other patterns are 𝑘
19: end if

20: return 𝑃

Fig. 2. The flowchart of mining cluster-critical sequential patterns. 

• Thirdly, such a pattern cannot be too short. Only when the pattern is longer enough, then it can be expected this pattern is capable 
of explaining and characterizing its associated cluster. Hence, we need to impose some constraints on the length of candidate 
cluster-critical patterns as well.

• Finally, such patterns should be non-redundant with respect to each other. If too many redundant patterns are extracted from 
some clusters, then some bias would be introduced to favor the corresponding clusters during the subsequent clustering decision 
tree construction procedure. Hence, we also need to impose some constraints on the redundancy of identified pattern set.

Overall, cluster-critical sequential patterns are defined as patterns that can strongly characterize a specific cluster while remain-
ing sufficiently distinct from patterns associated with other clusters. To ensure that this pattern set provides both meaningful and 
distinct explanations for their respective clusters, we impose several quantifiable (or actionable) constraints in two main aspects: (1) 
Characterizing a specific cluster: To ensure clear interpretability without being overly simplistic, the length of the pattern should be 
moderately small and fixed. Additionally, patterns should be frequent enough to be meaningful, so a minimum support threshold 
will be established. (2) Distinguishing from other clusters: The frequency of patterns cannot be too large, as this would reduce their 
discriminative power across clusters. Therefore, a maximum support threshold will be determined. Furthermore, patterns need to 
be diverse to avoid redundancy in the explanations and outlying patterns should be removed to avoid bias in the interpretation. To 
address this, we will employ a simple refinement process for redundancy and outlier removal.

3.2.2. Notations

Let 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑛} denote a sequential data set of 𝑛 discrete sequences, where each 𝑆𝑖 is an ordered list of items. Each item 
that composes the sequence is drawn from an alphabet. For a sequence 𝑆𝑖, we use 𝑆𝑖[𝑥, 𝑦] to denote a substring of 𝑆𝑖 that starts 
from the 𝑥-th position and ends at the 𝑦-th position, where 𝑦 > 𝑥 and 𝑦− 𝑥+ 1 is the length of substring. In the context of frequent 
sequential pattern mining, one pattern typically refers to one substring or its generalization (i.e., subsequence).

3.2.3. Pattern mining algorithm

The cluster-critical sequential pattern mining algorithm under multiple constraints is given in Algorithm 1, and its concise 
flowchart is shown in Fig. 2. To avoid repetition among patterns generated by the inclusion relationship, we only consider pat-
terns of a fixed length 𝑘 (line 1). Since it is not an easy task to directly specify a proper support threshold across different data sets, 
here we choose the minimum and maximal support threshold in an adaptive manner.

We first sort distinct support values of patterns in the initial pattern set 𝑃 in a non-decreasing order and the sorted support list is 
denoted by 𝐶 (line 2). Note that support value of a pattern here is defined as the number of sequences in 𝑆 that contains the pattern
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Table 1
The contingency table for variables 𝑃𝑗

and 𝑃𝑖 . Each cell 𝑛𝑠𝑡 (𝑠 and 𝑡 are either 0
or 1) represents the number of cases that 
both 𝑃𝑗 = 𝑠 and 𝑃𝑖 = 𝑡 are true in the se-
quential data set.

𝑃𝑖 = 1 𝑃𝑖 = 0 Total 
𝑃𝑗 = 1 𝑛11 𝑛10 𝑛1.
𝑃𝑗 = 0 𝑛01 𝑛00 𝑛0.
Total 𝑛.1 𝑛.0 𝑛

as a subsequence without the gap constraint. We set the maximal support threshold 𝑚𝑎𝑥𝑆 to be the value that is nearest to 𝑛∕2 in 𝐶
(lines 3∼4). The rationale for setting this threshold parameter in such a manner is as follows. First, there is at least two clusters in 
the data set if the target data set is clusterable. Second, it is reasonable to assume that the cluster size is balanced, i.e., the number 
of sequences in each cluster is approximately the same.

To specify the minimal support threshold, we employ the following heuristic method. We first set the initial value of 𝑚𝑖𝑛𝑆 to 
be 2 (line 5). Since 𝑢 is the position of 𝑚𝑎𝑥𝑆 in 𝐶 , if 𝑢 − 𝑓 ∗ |𝐶| > 0, then it means that there are still at least 𝑓 percentage of 
support values in 𝐶 that are less than 𝑚𝑎𝑥𝑆 , where 0 < 𝑓 < 1 is a user-specified parameter. To maintain a concise pattern set, we will 
raise the minimal support threshold from the default value of 2 to 𝐶[𝑢− 𝑓 ∗ |𝐶|] (lines 6∼8). After specifying two support threshold 
parameters, we can further reduce the pattern set (line 9).

To reduce the redundancy among patterns, we calculate the edit distance between each pattern and remaining patterns. If their 
edit distance is less than 2, then we will delete one pattern from the pattern set, as shown in lines 10∼16. Note that in line 10, we 
sort patterns in 𝑃 in a non-increasing order of supports so as to we will delete the pattern with a larger support in lines 11∼16. This 
is because patterns with smaller supports are more likely to be cluster-critical patterns after filtering patterns based on two support 
constraints.

We also include one step for removing those potentially outlying patterns. That is, if the edit distance between one pattern and all 
remaining patterns is 𝑘, then this pattern is probably an outlier such that it should not be included in the final pattern set. Note that if 
all patterns in 𝑃 are such “outliers”, then it means that we don’t need to remove any patterns since they are all good representatives 
for different clusters in this case (lines 17∼19).

3.3. Constructing clustering decision trees

3.3.1. Split point evaluation

Based on the set of 𝑚 sequential patterns 𝑃 = {𝑃1, 𝑃2, ...., 𝑃𝑚} returned by Algorithm 1, we can transform the sequential dataset 
𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑛} into a new data set 𝐵 = {𝐵1,𝐵2, ...,𝐵𝑛}, where each 𝐵𝑖 is composed of 𝑚 feature values and each 𝑃𝑗 is regarded as 
a feature. The 𝑗-th feature value of 𝐵𝑖 is either 1 or 0, according to whether the 𝑖-th sample contains the 𝑗-th pattern as a subsequence 
without the gap constraint.

To build an unsupervised binary decision tree, we choose the presence status of each pattern as the candidate split point, i.e., 
𝑃𝑗 = 1. That is, each non-leaf node is divided into a left child node and a right child node, where the left/right child node is composed 
of sequences with 𝑃𝑗 = 1∕0. To assess the goodness of each possible split point, we regard each pattern/feature as a binary variable. 
If one split point can yield a good partition, then it is reasonable to expect that the corresponding pattern variable is positively 
correlated with most of other 𝑚− 1 pattern variables. Based on this observation, we assess split points in terms of 𝑝-values based on 
the chi-squared test, as elaborated below.

If 𝑃𝑗 = 1 is the candidate split point at the current node, we will first calculate the chi-squared statistic for measuring the correlation 
between 𝑃𝑗 and 𝑃𝑖, where 𝑖 ≠ 𝑗. In detail, we can construct the contingency table as shown in Table 1 (where we assume it is 
constructed at the root node).

Based on above notations, we can calculate the chi-squared statistic as follows:

𝜒2(𝑃𝑗,𝑃𝑖) =
1 ∑

𝑠=0 

1 ∑
𝑡=0 

(
𝑛𝑠𝑡 − 𝑒𝑠𝑡

)2
𝑒𝑠𝑡

, (1)

where 𝑒𝑠𝑡 represents the expected frequency that is calculated as:

𝑒𝑠𝑡 =
𝑛𝑠. ⋅ 𝑛.𝑡

𝑛 
. (2)

Note that when there is a 𝑒𝑠𝑡 < 5, we will employ the Yates’s correction in Equation (1) by replacing (𝑛𝑠𝑡 − 𝑒𝑠𝑡)2 with (|𝑛𝑠𝑡 − 𝑒𝑠𝑡|−
0.5)2.

Note that each 𝜒2(𝑃𝑗,𝑃𝑖) is chi-squared random variable, we can obtain a p-value based on 𝜒2(𝑃𝑗 ,𝑃𝑖) and the degree of freedom 
𝑑𝑓 = (2 − 1)(2 − 1) = 1. To obtain a final 𝑝-value for assessing each candidate split point 𝑃𝑗 = 1, we use the p-value combination 
method [33] to combine 𝑚− 1 p-values derived from 𝑚− 1 test statistics 𝜒2(𝑃𝑗 ,𝑃1), ..., 𝜒2(𝑃𝑗 ,𝑃𝑗−1), 𝜒2(𝑃𝑗 ,𝑃𝑗+1), ..., 𝜒2(𝑃𝑗 ,𝑃𝑚). Note 
that many p-value combination methods are available in the literature, e.g., Stouffer’s Z-score method, Fisher’s method, Pearson’s 
method, Mudholkar’s and George’s method, and Tippett’s method. All these methods can be employed to fulfill our task at hand. Here 
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Algorithm 2 Tree Construction.
Input: The sequential data set 𝑆 , the pattern set 𝑃 , the significance level 𝛼.
Output: An unsupervised clustering tree 𝑇
1: 𝐵 = 𝑆(𝑃 )
2: ℎ = 0
3: return 𝑇 = 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵,𝛼)
4: function CTNode(𝐵,𝛼)
5: 𝑇 = new node (𝐵)
6: if |𝐵| ≤ 5 then return 𝑇

7: end if

8: Find the split point 𝑃𝑗 = 1 with minimum 𝑝-value 𝑝𝑣𝑎𝑙(𝑃𝑗 )
9: ℎ = ℎ+ 1

10: if 𝑝𝑣𝑎𝑙(𝑃𝑗 ) > 𝛼∕|𝑃 |ℎ then return 𝑇

11: end if

12: 𝐵𝑙,𝐵𝑟 =𝐵(𝑃𝑗 = 1)
13: if |𝐵𝑙| ≥ 3 and |𝐵𝑟| ≥ 3 then

14: 𝑇 .𝑙𝑒𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 = 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵𝑙, 𝛼)
15: 𝑇 .𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 = 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵𝑟, 𝛼)
16: end if

17: return 𝑇

18: end function

we use Stouffer’s Z-score method in our algorithm and the effect of using different p-value combination methods will be empirically 
investigated in Section 4.6.

3.3.2. Tree construction

The unsupervised decision tree construction algorithm is given in Algorithm 2. Taking both the sequential data 𝑆 and the pattern 
set 𝑃 as the input, we will first transform 𝑆 into a categorical data set 𝐵 as described in the first paragraph of Section 3.3.1 (line 1).

Then, we call the function 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵,𝛼) to create a root node for the clustering tree (line 3). In the function of 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵,𝛼), 
if the number of samples in 𝐵 is no larger than 5, we will not further divide it (lines 5∼ 7). Otherwise, we try to find the best split 
point with the minimum 𝑝-value (line 8).

Suppose 𝑃𝑗 = 1 is the best split point, we will compare its 𝑝-value with the adjusted significance level to determine whether the 
corresponding partition is statistically significant. We will discuss why the adjusted significance level is 𝛼∕|𝑃 |ℎ in Section 3.3.3. If 
the 𝑝-value cannot exceed the adjusted significance level, then we will not further divide the current node (lines 10∼11). Otherwise, 
we will utilize the split point 𝑃𝑗 = 1 to divide samples in 𝐵 into two subsets: 𝐵𝑙 and 𝐵𝑟 (line 12).

Note that in line 12, we will check if the size of 𝐵𝑙 and 𝐵𝑟 is large than 2. If one of two subsets is too small, i.e., the size is less than 
3, then it is not meaningful to further divide the current node since it will produce clusters with only two samples. If both subsets 
are large enough, we will recursively call 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵𝑙, 𝛼) and 𝐶𝑇𝑁𝑜𝑑𝑒(𝐵𝑟, 𝛼) to create two child nodes (lines 14∼15).

3.3.3. The adjusted significance level

Why do we need to adjust the significance level in Algorithm 2? This is mainly because we are tackling a multiple hypothesis 
testing issue. That is, each candidate split point evaluation issue corresponds to a single hypothesis testing problem. At each node, 
we need to consider |𝑃 | such significance testing problems since the number of candidate split points equals to |𝑃 |. Hence, we need 
to conduct a multiple testing correction to control the Type-I error.

In the literature of multiple hypothesis testing, people typically tries to control the Family-Wise Error Rate (FWER), which is 
defined as the probability of making at least one Type-I error. The Bonferroni correction method [34] is generally employed to ensure 
that the FWER is less than the significance level 𝛼. The basic idea is to utilize an adjusted significance level, which is defined as 
ratio between 𝛼 and the number of tested hypotheses. If we only reject those null hypotheses whose 𝑝-values are less than adjusted 
significance level, then it can be proved that the FWER is no larger than 𝛼.

In our context, at the root node, we have |𝑃 | candidate split points (accordingly, |𝑃 | significance tests), hence the adjusted 
significance level should be 𝛼∕|𝑃 | (line 10). To achieve this, initially we set ℎ = 0 (line 2) and ℎ is increased by 1 (line 9). When we 
proceed further to grow the tree, at each node, we have to check |𝑃 | split points as well. If we assume the tree structure is fixed, 
then the combination of ℎ split points at all visited nodes so far corresponds to a composite null hypothesis. The number of possible 
composite null hypotheses is |𝑃 |ℎ. Therefore, 𝛼 should be divided by |𝑃 |ℎ, where ℎ will be increased by one once we try to evaluate 
all patterns in 𝑃 to find the best split point for the current node.

3.3.4. An illustration of decision tree construction

Based on the set of cluster-critical sequential patterns mined in Section 3.2.1, we can leverage these patterns to construct a final 
decision tree in the manner described above for any given sequential data. This is achieved by selecting the optimal split pattern and 
applying a significance-based threshold for controlling the tree growth. As shown in Fig. 3, we demonstrate how the final decision 
tree is formed using a small but real sequential dataset (Activity). Fig. 3(a) presents the dataset, which is composed of 35 sequences 
(S1∼S35). In Fig. 3(d), the final decision tree partitions the dataset into two leaf nodes (representing two clusters): {S1∼S14} and 
{S15∼S35}.
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Fig. 3. Illustration of how to obtain the final decision tree from the Activity dataset. 

The process is detailed as follows: Fig. 3(b) shows the seven mined cluster critical sequential patterns (P1∼P7). In Fig. 3(c), for 
the convenience of referencing patterns used to build the decision tree, the data is represented in binary format, where each sequence 
is assigned a value of 0 or 1 based on the presence or absence of a pattern. For example, since S1 contains pattern P7, it is assigned 
a value of 1 in the corresponding column. In Fig. 3(d), we assess the 𝑝-value for each of these cluster-critical patterns as a potential 
split point. At the root node, P5 generates the smallest 𝑝-value and simultaneously meets our significance threshold, thus it is retained 
as the split point. This divides the dataset into a left child node (S1∼S14), which contains P5, and a right child node (S15∼S35), 
which does not. Recursively, at the node corresponding to S1∼S14, the smallest 𝑝-value yielded by P2 is 0.6145, and at the node 
corresponding to S15∼S35, the smallest 𝑝-value achieved by P4 is 0.3145. Since the 𝑝-values of P2 and P4 do not meet the significance 
level (set to 0.01∕49), so the splits are halted at these two leaf nodes. The construction of the decision tree is completed in which only 
an individual pattern at the root node determines and explains how two clusters are formed.

3.3.5. Time complexity

The proposed SigISC method is composed of two subsequent algorithmic procedures: the extraction cluster-critical sequential 
patterns and the construction of clustering decision tree. In the next two paragraphs, we will provide the time complexity analysis 
on these two procedures respectively.

As presented in Algorithm 1, we need to first collect the support values of all patterns of length 𝑘. To generate all candidate 
patterns whose support values are non-zeros, we can scan each sequence from the left to right with a sliding window of length 𝑘. 
Let 𝑙 denote the number of average length of sequences in 𝑆 , then this step takes 𝑂(𝑛𝑙) time. To count the support values of all 
candidate patterns in 𝑃 , we can employ a dynamic programming procedure to fulfill this task, whose time complexity is 𝑂(𝑘𝑙|𝑃 |). 
Sorting all distinct support values requires at most 𝑂(|𝑃 |𝑙𝑜𝑔|𝑃 |) time and the selection of two support thresholds needs 𝑂(|𝑃 |) time. 
Finally, we need to check all pattern pairs to remove redundant ones, which requires at most 𝑂(|𝑃 |2𝑘2). Overall, the time complexity 
of the pattern mining step would be 𝑂(𝑛𝑙 + 𝑘𝑙|𝑃 | + 𝑘|𝑃 | + |𝑃 |𝑙𝑜𝑔|𝑃 | + |𝑃 | + |𝑃 |2𝑘2), which can be approximately simplified to be 
𝑂(𝑛𝑙+𝑘𝑙𝑚+𝑚2𝑘2) under the assumption that |𝑃 | will not be reduced too much after filtering patterns based on multiple constraints, 
where 𝑚 is the number of final reported patterns.

The time complexity analysis of the clustering decision tree construction method is similar to that of supervised decision tree such 
as CART [35]. If the decision tree is assumed to be approximately balanced, then the average time complexity of the tree construction 
procedure would be 𝑂(𝑚2𝑛𝑙𝑜𝑔𝑛), where the term 𝑂(𝑚2) is the number of chi-squared tests during split point selection at each node.

4. Experiments

4.1. Data sets

The same 14 sequential data sets that have been used in [5,6] are employed for comparing different algorithms. Some important 
characteristics of these data sets are recorded in Table 2, where 𝑛 represents the number of sequences, |𝐼| denotes the alphabet size, 
𝑚𝑖𝑛𝑙 (𝑚𝑎𝑥𝑙) denotes the minimal (maximal) sequence length, and #Classes represents the number of classes/clusters.
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Table 2
The main characteristics of 14 sequential data sets.

Dataset Domain 𝑛 |𝐼| 𝑚𝑖𝑛𝑙 𝑚𝑎𝑥𝑙 #Classes 
Activity Human Actions 35 10 12 43 2 
Aslbu Sign Language 424 250 2 54 7 
Auslan2 Sign Language 200 16 2 18 10 
Context Context Data 240 94 22 246 5 
Epitope Bioinformatics 2392 20 9 21 2 
Gene Bioinformatics 2942 5 41 216 2 
News Natural Language 4976 27884 1 6779 5 
Pioneer Robotics 160 178 4 100 3 
Question Natural Language 1731 3612 4 29 2 
Reuters Natural Language 1010 6380 4 533 4 
Robot Robotics 4302 95 24 24 2 
Skating Human Actions 530 82 18 240 7 
Unix Command Logs 5472 1697 1 1400 4 
Webkb Natural Language 3667 7736 1 20628 3 

4.2. Evaluation measures

For evaluating clustering quality, we employ three external evaluation measures: Purity, NMI (Normalized Mutual Information) 
and F1-score. Higher values of these metrics indicate better clustering quality. These metrics compare the predicted clusters 𝜋 =
{𝜋1, 𝜋2,⋯ , 𝜋𝐿} and the ground-truth clusters 𝜋𝐺𝑇 , and are defined as follows:

Purity = 1
𝑛 
⋅

𝐿 ∑
𝑖 
max

𝑗
|𝜋𝑖 ∩ 𝜋𝐺𝑇

𝑗
| . (3)

NMI = 1
2
⋅
𝐇(𝜋) +𝐇(𝜋𝐺𝑇 ) −𝐇(𝜋,𝜋𝐺𝑇 )

𝐇(𝜋) +𝐇(𝜋𝐺𝑇 ) 
, (4)

where 𝐇(𝜋) and 𝐇(𝜋𝐺𝑇 ) denote the entropy of partition variable, while 𝐇(𝜋,𝜋𝐺𝑇 ) represents the joint entropy of these two partition 
variables.

F1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

, (5)

where

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (6)

In Equation (6), TP (True Positive) counts the number of pairs of sequences that are in the same cluster in both 𝜋𝐺𝑇 and 𝜋. FP 
(False Positive) counts the number of pairs of sequences that are in the same cluster in 𝜋 but belong to different clusters in 𝜋𝐺𝑇 . FN 
(False Negative) counts the number of pairs of sequences that are in the same cluster in 𝜋𝐺𝑇 but are assigned to different clusters in 
𝜋.

For evaluating the interpretability of tree-based clustering model, we use three commonly used structural metrics [27]: the number 
of leaf nodes in the tree (#𝐿𝑒𝑎𝑓 ), the maximal depth of the tree (𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥) and the average depth of all leaf nodes (𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔). Since 
one decision tree would possess better explainability if it is small and shallow. Hence, above three metrics can characterize the 
interpretability since #𝐿𝑒𝑎𝑓 is associated with the tree size and 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 and 𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔 quantify whether the tree is shallow or not. 
A decision tree that have smaller values in terms of these measures is expected to be more interpretable.

4.3. Baselines

To show the advantages of our algorithm, the following algorithms are included in the performance comparison. These algorithms 
can be further divided into three categories:

(1) Non-interpretable sequence clustering algorithms: HC [36], FB-LL [9], MCSC [17], 𝑘-Median [15], MinDL [16], kkmeans [37], 
RFSC [4], RSC [5]. We compare with these algorithms with respect to the clustering quality in terms of three external measures. The 
parameter settings for these methods are same to that used in [4,5].

(2) Interpretable sequence clustering algorithm [6]. It is the only tree-based interpretable sequence clustering algorithm in the 
literature. In the experiment, we use its default parameters.

(3) Interpretable clustering algorithms for vectorial data. Just as we have pointed out, we can obtain interpretable clustering result 
by first transforming sequences into vectors and then apply existing interpretable clustering methods for vectorial data. Hence, the 
following interpretable clustering algorithms with their default settings are employed: CUBT [38], IMM [28], SHA [27].

For our algorithm, its parameters are specified as follows: we set 𝑘, 𝑓 and 𝛼 to be 3, 0.3 and 0.01, respectively. The Stouffer’s 
Z-score method is used as the p-value combination method and each individual p-value has a default weight of 1. All experiments 
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Table 3
Clustering quality comparison of SigISC, HC, FB-LL, MCSC, 𝑘-Median, MinDL, kkmeans, RFSC and RSC. ‘#HIT’ denotes the number of datasets where 
the method performs best in at least two evaluation metrics.

Datasets Evaluation SigISC HC FB-LL MCSC 𝑘-Median MinDL kkmeans RFSC RSC 

Activity
Purity 1 0.600 0.643 0.686 0.695 0.600 0.720 0.700 0.797 
NMI 1 0.038 0.129 0.118 0.231 0.078 0.225 0.248 0.324 
F1-score 1 0.652 0.613 0.537 0.620 0.515 0.612 0.664 0.669

Aslbu
Purity 0.382 0.380 0.501 0.373 0.441 0.507 0.469 0.507 0.475 
NMI 0.010 0.028 0.220 0.046 0.139 0.177 0.157 0.230 0.192 
F1-score 0.371 0.366 0.286 0.183 0.268 0.126 0.257 0.360 0.259

Auslan2
Purity 0.260 0.195 0.309 0.275 0.316 0.295 0.321 0.347 0.389

NMI 0.277 0.159 0.336 0.221 0.315 0.245 0.316 0.312 0.356

F1-score 0.254 0.173 0.246 0.153 0.251 0.193 0.256 0.209 0.236

Context
Purity 0.550 0.425 0.518 0.354 0.572 0.550 0.610 0.377 0.505 
NMI 0.370 0.466 0.407 0.071 0.515 0.300 0.593 0.201 0.418 
F1-score 0.389 0.487 0.444 0.235 0.523 0.211 0.573 0.352 0.417

Epitope
Purity 0.597 0.559 0.559 0.683 0.594 0.670 0.656 0.674 0.685

NMI 0.081 0.044 0.096 0.093 0.054 0.060 0.126 0.105 0.082 
F1-score 0.495 0.671 0.635 0.585 0.550 0.277 0.582 0.568 0.697

Gene
Purity 0.999 0.511 1 0.519 0.935 0.965 0.999 0.977 0.992 
NMI 0.993 0.060 0.994 0.012 0.782 0.158 0.989 0.875 0.940 
F1-score 0.999 0.665 0.999 0.500 0.914 0.059 0.998 0.956 0.984

News
Purity 0.267 0.210 0.269 0.241 0.284 0.535 0.462 0.266 0.271 
NMI 0.112 0.002 0.106 0.007 0.036 0.249 0.226 0.023 0.023 
F1-score 0.329 0.253 0.329 0.218 0.263 0.256 0.344 0.282 0.214

Pioneer
Purity 0.888 0.656 0.652 0.644 0.662 0.713 0.807 0.790 0.641 
NMI 0.614 0.064 0.175 0.090 0.097 0.181 0.459 0.465 0.194 
F1-score 0.720 0.657 0.476 0.406 0.515 0.338 0.652 0.686 0.459

Question
Purity 0.578 0.518 0.518 0.745 0.604 0.570 0.560 0.656 0.653 
NMI 0.074 0.022 0.019 0.295 0.081 0.047 0.015 0.086 0.080 
F1-score 0.639 0.666 0.619 0.665 0.591 0.546 0.514 0.561 0.554

Reuters
Purity 0.461 0.255 0.321 0.347 0.448 0.287 0.699 0.528 0.468 
NMI 0.302 0.097 0.101 0.048 0.154 0.062 0.482 0.293 0.153 
F1-score 0.410 0.298 0.350 0.292 0.388 0.391 0.582 0.479 0.351

Robot
Purity 0.723 0.515 0.544 0.637 0.557 0.535 0.618 0.595 0.635 
NMI 0.095 0.046 0.035 0.056 0.017 0.019 0.068 0.032 0.065 
F1-score 0.309 0.655 0.592 0.538 0.521 0.522 0.564 0.522 0.544

Skating
Purity 0.223 0.183 0.222 0.221 0.220 0.232 0.228 0.221 0.232

NMI 0.037 0.029 0.041 0.023 0.041 0.112 0.032 0.039 0.038 
F1-score 0.134 0.252 0.193 0.150 0.181 0.246 0.164 0.169 0.187

Unix
Purity 0.566 0.444 0.491 0.464 0.479 0.756 0.451 0.610 0.515 
NMI 0.168 0.004 0.094 0.031 0.055 0.224 0.018 0.235 0.103 
F1-score 0.398 0.484 0.422 0.308 0.371 0.227 0.438 0.430 0.352

Webkb
Purity 0.515 0.444 0.443 0.448 0.479 0.723 0.473 0.491 0.551 
NMI 0.092 0.020 0.055 0.019 0.072 0.199 0.126 0.078 0.128 
F1-score 0.401 0.421 0.455 0.378 0.426 0.341 0.403 0.473 0.264

#HIT 3 0 1 1 0 3 2 1 2 

Mean 
(Average Rank)

Purity
0.572 0.421 0.499 0.474 0.520 0.567 0.577 0.553 0.558 
(3.929) (8.393) (5.929) (6.179) (5.214) (4.286) (3.750) (3.929) (3.393)

NMI
0.302 0.077 0.201 0.081 0.185 0.151 0.274 0.230 0.221 
(3.857) (7.714) (4.536) (7.071) (5.179) (5.143) (3.786) (3.893) (3.821) 

F1-score
0.489 0.479 0.476 0.368 0.456 0.303 0.496 0.479 0.442 
(4.143) (3.714) (3.786) (7.143) (5.000) (7.764) (4.000) (4.321) (5.429) 

were conducted on a PC with Intel(R) Core(TM) i7-10700F 2.90 GHz and 16 GB Memory. The implementation codes for SigISC and 
other interpretable comparison methods are available at: https://github.com/hulianyu/SigISC.

4.4. Clustering quality comparison

In Table 3, the performance comparison results among SigISC and conventional sequence clustering algorithms in terms of Purity, 
NMI and F1-score are recorded. From this table, it can be observed that our method can beat other algorithms with respect to the 
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Table 4
Clustering quality comparison of SigISC and some interpretable clustering algorithms. Except for ISCT, other algorithms need a feature/pattern set as input. Note that 
the CUBT algorithm has two variants: CUBTHam and CUBTMI.

Datasets Evaluation
SigISC CUBTHam CUBTMI IMM SHA 

ISCT
FSet 1 FSet 2 FSet 1 FSet 2 FSet 1 FSet 2 FSet 1 FSet 2 FSet 1 FSet 2 

Activity
Purity 0.686 1 0.600 1 0.600 1 0.718 0.906 0.683 0.970 0.994 
NMI 0.082 1 0 1 0 1 0.163 0.778 0.111 0.925 0.973 
F1-score 0.601 1 0.672 1 0.672 1 0.640 0.895 0.619 0.964 0.989

Aslbu
Purity 0.422 0.382 0.469 0.382 0.469 0.382 0.446 0.382 0.447 0.373 0.491 
NMI 0.109 0.010 0.141 0.006 0.141 0.006 0.125 0.006 0.125 0 0.218 
F1-score 0.412 0.371 0.337 0.371 0.337 0.371 0.348 0.371 0.345 0.373 0.317

Auslan2
Purity 0.340 0.260 0.235 0.295 0.270 0.285 0.352 0.376 0.351 0.377 0.348 
NMI 0.357 0.277 0.214 0.258 0.247 0.232 0.344 0.362 0.343 0.362 0.331 
F1-score 0.266 0.254 0.265 0.261 0.269 0.258 0.259 0.290 0.259 0.290 0.265

Context
Purity 0.608 0.550 0.554 0.525 0.479 0.467 0.540 0.520 0.550 0.516 0.569 
NMI 0.446 0.370 0.439 0.319 0.260 0.274 0.417 0.310 0.430 0.308 0.557

F1-score 0.378 0.389 0.459 0.404 0.378 0.335 0.461 0.391 0.463 0.388 0.551

Epitope
Purity 0.710 0.597 0.632 0.617 0.632 0.620 0.559 0.562 0.559 0.563 0.627 
NMI 0.084 0.081 0.104 0.080 0.098 0.074 0.073 0.068 0.073 0.067 0.114

F1-score 0.171 0.495 0.544 0.527 0.544 0.523 0.610 0.612 0.610 0.612 0.587

Gene
Purity 1 0.999 1 1 1 1 1 1 1 1 1

NMI 0.988 0.993 1 1 1 1 1 1 1 1 1

F1-score 0.998 0.999 1 1 1 1 1 1 1 1 1

News
Purity 0.293 0.267 0.264 0.264 0.266 0.251 0.266 0.259 0.260 0.260 0.254 
NMI 0.082 0.112 0.033 0.065 0.039 0.051 0.037 0.053 0.028 0.054 0.020 
F1-score 0.286 0.329 0.291 0.330 0.290 0.329 0.291 0.324 0.291 0.324 0.262

Pioneer
Purity 0.869 0.888 0.869 0.869 0.719 0.719 0.766 0.837 0.755 0.829 0.798 
NMI 0.512 0.614 0.541 0.541 0.241 0.321 0.389 0.492 0.366 0.482 0.549 
F1-score 0.581 0.720 0.709 0.709 0.403 0.512 0.626 0.671 0.612 0.663 0.688

Question
Purity 0.525 0.578 0.568 0.604 0.582 0.578 0.527 0.542 0.530 0.541 0.656

NMI 0.001 0.074 0.076 0.095 0.076 0.055 0.011 0.021 0.015 0.019 0.122

F1-score 0.608 0.639 0.565 0.610 0.561 0.638 0.645 0.655 0.645 0.655 0.572

Reuters
Purity 0.368 0.461 0.348 0.417 0.348 0.463 0.414 0.407 0.411 0.407 0.579

NMI 0.124 0.302 0.109 0.179 0.109 0.240 0.143 0.166 0.144 0.163 0.392

F1-score 0.365 0.410 0.398 0.392 0.398 0.408 0.360 0.399 0.364 0.397 0.501

Robot
Purity 0.653 0.723 0.652 0.705 0.670 0.707 0.564 0.580 0.564 0.570 0.639 
NMI 0.049 0.095 0.041 0.056 0.055 0.064 0.013 0.037 0.013 0.031 0.071 
F1-score 0.139 0.309 0.401 0.337 0.293 0.434 0.561 0.608 0.561 0.610 0.551

Skating
Purity 0.262 0.223 0.208 0.219 0.208 0.213 0.224 0.218 0.220 0.223 0.208 
NMI 0.066 0.037 0.021 0.044 0.026 0.028 0.035 0.030 0.033 0.033 0.041 
F1-score 0.094 0.134 0.174 0.164 0.187 0.153 0.157 0.158 0.157 0.159 0.224

Unix
Purity 0.546 0.566 0.566 0.528 0.537 0.528 0.532 0.523 0.530 0.520 0.506 
NMI 0.168 0.168 0.191 0.142 0.150 0.140 0.140 0.124 0.143 0.124 0.110 
F1-score 0.398 0.398 0.397 0.404 0.401 0.382 0.420 0.409 0.416 0.408 0.385

Webkb
Purity 0.505 0.515 0.502 0.545 0.489 0.527 0.443 0.460 0.444 0.460 0.502 
NMI 0.088 0.092 0.079 0.097 0.080 0.097 0.042 0.034 0.042 0.036 0.094 
F1-score 0.425 0.401 0.354 0.345 0.395 0.343 0.386 0.433 0.388 0.430 0.452

Mean 
(Average Rank)

Purity
0.556 0.572 0.533 0.569 0.519 0.553 0.525 0.541 0.522 0.543 0.584

(4.607) (4.464) (5.929) (4.857) (6.607) (6.250) (6.571) (7.143) (7.179) (7.107) (5.286) 
NMI

0.226 0.302 0.213 0.277 0.180 0.256 0.209 0.249 0.205 0.257 0.328

(5.464) (4.107) (6.179) (4.500) (7.000) (6.357) (7.107) (7.071) (7.179) (7.321) (3.714)

F1-score
0.409 0.489 0.469 0.490 0.438 0.478 0.483 0.515 0.481 0.520 0.525

(8.357) (6.179) (6.500) (5.500) (7.250) (7.143) (6.036) (3.750) (6.107) (3.929) (5.250) 

overall NMI. Although our method cannot outperform other algorithms in terms of Purity and F1-score, its performance is at least 
comparable to these existing methods. Notably, in terms of achieving complete dominance in certain datasets (indicated by #HIT), 
SigISC slightly outperforms SOTA methods, such as kkmeans and RSC. Hence, we can conclude that our method is competitive to 
current non-interpretable sequence clustering algorithms with respect to the clustering quality.

In Table 4, we compare our method with some interpretable clustering algorithms. Among these algorithms, ISCT is specially 
developed for handling sequential data. Other remaining algorithms require to transform sequences into vectors in order to conduct 
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Table 5
The selection of 𝑚𝑖𝑛𝑆 and 𝑚𝑎𝑥𝑆 for each dataset, utilized for mining the frequent patterns set (Fset). FSet 1 is composed of top 70% frequent subsequences of length 
𝑘, and FSet 2 is reported by our pattern mining algorithm (lines 1∼8 in Algorithm 1).

Activity Aslbu Auslan2 Context Epitope Gene News Pioneer Question Reuters Robot Skating Unix Webkb 

𝑚𝑖𝑛𝑆
Fset 1 5 4 7 30 16 1549 23 8 11 14 52 30 81 34 
Fset 2 10 9 24 44 36 2 57 20 29 32 137 69 240 89

𝑚𝑎𝑥𝑆
Fset 1 20 14 71 755 274 6201 330 61 181 111 1719 467 5126 1302 
Fset 2 16 14 71 114 274 1462 330 61 181 111 1719 252 2487 1302 

Table 6
The performance comparison of interpretable clustering algorithms in terms of #𝐿𝑒𝑎𝑓 .

Dataset SigISC CUBTHam CUBTMI IMM SHA ISCT 
Activity 2 2 2 2 2 2

Aslbu 2 2 2 2 1 7 
Auslan2 5 6 4 10 10 9.7 
Context 6 5 8 5 5 5

Epitope 13 7 11 2 2 2

Gene 2 2 2 2 2 2

News 7 6 8 5 5 5

Pioneer 4 3 3 3 3 3

Question 3 7 5 2 2 2

Reuters 5 6 6 4 4 4

Robot 12 12 11 2 2 2

Skating 11 9 7 7 7 7

Unix 15 15 11 4 4 4

Webkb 9 18 7 3 3 3

Mean (#𝐿𝑒𝑎𝑓 ) 6.857 7.143 6.214 3.786 3.714 4.121 

the cluster analysis. To show the advantage of our pattern mining algorithm on extracting cluster-critical features, in addition to the 
feature set derived from our algorithm, we also employ the widely used feature extraction method based on frequent patterns (FSet 
1 in the table). The corresponding 𝑚𝑖𝑛𝑆 and 𝑚𝑎𝑥𝑆 support thresholds for these two pattern sets on each data set are summarized in 
Table 5. From Table 4, we have the following important observations.

Firstly, our method and ISCT generally have better performance than other algorithms. This is easy to understand since these two 
algorithms are designed for clustering discrete sequences. Secondly, ISCT is better than our method because ISCT takes the number 
of ground-truth clusters as input, while our method can determine the number of clusters adaptively. Finally, it is clearly visible that 
FSet 2 is better than FSet 1, indicating that our pattern mining algorithm is able to extract cluster-critical patterns.

4.5. Interpretability comparison

We also compare our algorithm with those interpretable clustering algorithms with respect to three interpretability metrics: 
#𝐿𝑒𝑎𝑓 , 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 and 𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔 . We use the FSet 2 in Table 4 derived from our pattern mining algorithm (Algorithm 1) as the input 
for two CUBT variants, IMM and SHA. The detailed experimental results are recorded in Table 6 and Table 7, respectively. The 
comparison on runtime is provided in Table 8 (with all runtimes including the time spent on pattern mining). We can observe that 
our SigISC is nearly the most time-efficient method, similar to IMM and SHA, and requires only 0.4% of the total runtime of the ISCT 
method.

From Table 6, we can observe that both our algorithm and CUBT variants construct a tree with more leaf nodes than other 
interpretable clustering algorithms. This is easily explained, as IMM, SHA, and ISCT use the number of ground-truth clusters as input, 
which strictly controls the number of leaf nodes. Consequently, the depth-based metrics of IMM, SHA, and ISCT shown in Table 7 are 
also constrained under this setting, as the number of branch nodes in the binary tree is determined by the number of leaf nodes. IMM, 
SHA, and ISCT are not applicable in the following scenarios: (1) When the number of clusters in the data is unknown, and we lack a 
priori knowledge to set the input number of clusters; (2) When the ground truth implies that the data contains only a single cluster, 
but we still wish to explore its potential heterogeneity. In this latter scenario, as shown in an interesting experiment in Table 9, only 
our SigISC and CUBT variants can be utilized.

From Table 7, it can be observed that the depth-based metrics in the tree constructed by our algorithm are comparable to those of 
the two CUBT variants, even though we did not use any additional measures to control the tree depth. In contrast, CUBT by default 
imposes a trivial depth parameter that constrains the depth of the tree (i.e., 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 ≤ 7).

Overall, based on the experimental results with respect to interpretability, our method does not outperform existing solutions 
that requires the number of ground-truth clusters as input. However, our algorithm demonstrates better overall performance than 
two CUBT variants, which are similar to our method in that the number of clusters can be determined adaptively. Especially in the 
experiments on single-cluster data shown in Table 9, our method can potentially more accurately assess the tendency of homogeneity 
in the data, thus generating fewer splits and leaf nodes. This advantage is largely due to the significance-based criteria we employ, 
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Table 7
The performance comparison of interpretable clustering algorithms in terms of 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥

and 𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔 .

Dataset SigISC CUBTHam CUBTMI IMM SHA ISCT 
𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥

Activity 1 1 1 1 1 1

Aslbu 1 1 1 1 0 6 
Auslan2 3 3 3 4 4 8.7 
Context 3 3 6 3.3 3.2 4 
Epitope 5 5 5 1 1 1

Gene 1 1 1 1 1 1

News 4 3 4 3.96 3.9 4 
Pioneer 3 2 2 2 2 2

Question 2 5 3 1 1 1

Reuters 4 3 4 2.98 2.96 3 
Robot 8 7 6 1 1 1

Skating 4 4 4 3.92 3.84 6 
Unix 6 7 6 2.74 2.42 3 
Webkb 5 7 6 2 2 2

Mean (𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥) 3.571 3.714 3.714 2.207 2.094 3.121 

𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔

Activity 1 1 1 1 1 1

Aslbu 1 1 1 1 0 3.857 
Auslan2 2.6 2.667 2.25 3.416 3.476 5.4 
Context 2.667 2.4 4 2.576 2.548 2.8 
Epitope 3.846 3.286 4 1 1 1

Gene 1 1 1 1 1 1

News 3 2.667 3.25 2.792 2.76 2.8 
Pioneer 2.25 1.667 1.667 1.667 1.667 1.667

Question 1.667 3.429 2.4 1 1 1

Reuters 2.8 2.667 2.833 2.245 2.24 2.25 
Robot 4.667 5.333 4.273 1 1 1

Skating 3.545 3.444 3 3.017 2.98 3.857 
Unix 4.533 5.333 4.091 2.185 2.105 2.25 
Webkb 3.444 5 3.857 1.667 1.667 1.667

Mean (𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔) 2.716 2.921 2.759 1.826 1.746 2.253 

Table 8
The running time comparison among interpretable clustering algorithms.

Datasets SigISC CUBTHam CUBTMI IMM SHA ISCT 
Activity 0.07 0.74 0.74 0.07 0.09 3.72 
Aslbu 0.08 0.66 0.44 0.08 0.10 25.58 
Auslan2 0.07 0.96 0.91 0.07 0.10 29.07 
Context 0.32 4.20 4.35 0.21 0.24 37.50 
Epitope 0.30 35.60 8.42 0.25 0.26 17.31 
Gene 0.56 12.91 1.66 0.56 0.57 353.50 
News 3.47 263.90 20.95 3.38 3.41 1671.32 
Pioneer 0.08 0.63 0.61 0.08 0.10 9.46 
Question 0.15 18.88 2.05 0.15 0.18 8.38 
Reuters 0.66 12.01 4.65 0.60 0.63 106.22 
Robot 1.35 250.74 83.00 0.87 0.89 63.49 
Skating 0.29 7.38 9.82 0.20 0.23 47.13 
Unix 1.54 318.49 52.39 1.11 1.15 362.73 
Webkb 2.89 145.86 37.76 2.69 2.71 332.61 
Total 11.83 1072.94 227.73 10.31 10.66 3068.01 

where our method primarily relies on the significance level to control the formation of the final decision tree, rather than the trivial 
stopping criteria used in the CUBT method.

As shown in Fig. 4, which extends the #𝐿𝑒𝑎𝑓 results of SigISC from Table 6, the leaf nodes are categorized based on the stopping 
criteria used. From the figure, we observe that, for all datasets (except Webkb), the leaf nodes are predominantly determined by the 
significance-based stopping criterion. Moreover, since each branch node follows the same criterion, this suggests that, in practice, 
the significance-based stopping criterion plays a key role in the growth of the decision tree, with fewer cases influenced by the trivial 
stopping criterion.

To intuitively compare interpretability, we display the decision tree structures of SigISC and CUBTMI (the better-performing 
CUBT variant), as neither requires specifying the number of clusters. A representative example on the Webkb dataset is shown in 
Fig. 5, enabling a fair comparison of tree structures since they use the same number of unique splitting patterns. Although SigISC 
generates more clusters than CUBTMI (#𝐿𝑒𝑎𝑓 : 9 vs. 7), it still produces shallower tree structures than CUBTMI (𝐷𝑒𝑝𝑡ℎ: 5 vs. 6). From 
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Table 9
The #𝐿𝑒𝑎𝑓 comparison of single-cluster data between 
SigISC and CUBT methods. Here, 𝑛single denotes the num-
ber of sequences in the single-cluster data. The specific 
single-cluster data is selected from one of the clusters in 
each dataset by sorting all clusters in a descending order of 
𝑛single and choosing the cluster in the second-largest posi-
tion. Note that the cluster-critical sequential patterns used 
for the single-cluster data remain consistent with its corre-
sponding dataset.

Datasets 𝑛single SigISC CUBTHam CUBTMI

Auslan2 20 2 1 1

Context 50 2 2 4 
Epitope 1056 3 6 6 
News 996 1 3 3 
Pioneer 42 1 1 1

Question 835 3 6 5 
Reuters 253 1 3 3 
Robot 2097 8 14 7

Skating 88 5 4 3

Unix 1590 3 11 10 
Webkb 1116 6 15 11 
Mean (#𝐿𝑒𝑎𝑓 ) 3.182 6 4.909 

Fig. 4. Bar plot showing the number of leaf nodes determined by two different stopping criteria of SigISC across different datasets. The stopping criteria for each node 
are as follows: the trivial criterion of |𝐵|≤ 5, and the significance-based criterion of |𝐵|> 5 ∧ 𝑝val >

𝛼

|𝑃 |ℎ (abbreviated in the legend).

a morphological perspective, CUBTMI generates the deepest tree structure for its corresponding number of leaf nodes, continuously 
splitting along the rightmost nodes. In contrast, SigISC introduces multiple branch nodes from both sides of their parent nodes at the 
first and second layers, allowing for further compression and resulting in shallower tree structures.

4.6. The effect of p-value combination method

To evaluate the impact of p-value combination method on the clustering results of our method, we conduct a series of experiments. 
We compare the Stouffer’s Z-score method, Fisher’s method, Pearson’s method, Mudholkar’s and George’s method, and Tippett’s 
method in terms of clustering quality and interpretability.

In Fig. 6 (orange sections), we compared five p-value combination methods in terms of Purity, NMI and F1-score. From this figure, 
it can be seen that in most datasets the Fisher’s method performs the best with respect to both Purity and NMI and the Pearson’s 
method is the best performer in terms of F1-score.

In Fig. 6 (blue sections), we compared five methods in terms of #𝐿𝑒𝑎𝑓 , 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 and 𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔 . As shown in this figure, #𝐿𝑒𝑎𝑓 , 
𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑥 and 𝐷𝑒𝑝𝑡ℎ𝑎𝑣𝑔 reported by the Fisher’s method and Tippett’s method are typically larger than other methods. Meanwhile, 
the Pearson’s method can yield the minimal clustering tree with respect to these metrics.
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Fig. 5. Decision trees for SigISC and CUBTMI on the Webkb dataset. 

Overall, the use of different p-value combination methods can affect the performance of SigISC with respect to both clustering qual-
ity and interpretability. None of these p-value combination methods can achieve both the best clustering quality and interpretability. 
To make a trade-off, the Stouffer’s Z-score method seems to be a good choice.

5. Conclusion

In this paper, we introduce SigISC, a tree-based interpretable clustering method for discrete sequences based on significance 
testing. This method is characterized by a novel approach to cluster-critical sequential pattern extraction and a significance-based 
procedure for evaluating and selecting split points during decision tree construction in an adaptive manner. It allows us to construct 
a clustering tree that is explainable in terms of both its output and the split decisions. The effectiveness of the proposed method is 
verified through a series of experiments on real sequential data sets.

However, our algorithm still has several limitations. (1) The pattern extraction method remains highly heuristic, and its underlying 
theoretical principles need further exploration. Inevitably, there exist better methods for extracting cluster-critical patterns, particu-
larly the combination of different pattern lengths, which remains an open problem. In addition to selecting suitable pattern extraction 
parameters, incorporating additional constraints to search for cluster-critical patterns may require the use of a multi-objective opti-
mization approach. (2) The 𝑝-value combination method is highly sensitive to the number of patterns, making it challenging to specify 
an appropriate significance level parameter that can adapt to varied datasets. Future work could explore alternative approaches that 
do not rely on 𝑝-value combination but instead assess multiple 𝑝-values from different perspectives or conditions, jointly optimizing 
them to provide more robust interpretations. (3) The 𝑝-values of splitting patterns are mainly used for assessing nodes in a top-
down manner. Related topics, such as using 𝑝-values for pruning arbitrary decision trees, could present interesting and unexplored 
challenges.
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Fig. 6. The effect of 𝑝-value combination method on SigISC in terms of clustering quality and interpretability. 
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