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Abstract
The objective of clusterability evaluation is to check whether a clustering structure exists
within the data set. As a crucial yet often-overlooked issue in cluster analysis, it is essential
to conduct such a test before applying any clustering algorithm. If a data set is unclusterable,
any subsequent clustering analysis would not yield valid results. Despite its importance, the
majority of existing studies focus on numerical data, leaving the clusterability evaluation
issue for categorical data as an open problem. Here, we present TestCat, a testing-based
approach to assess the clusterability of categorical data in terms of an analytical p-value.
The key idea underlying TestCat is that clusterable categorical data possess many strongly
associated attribute pairs and hence the sum of Chi-squared statistics of all attribute pairs
is employed as the test statistic for p-value calculation. We apply our method to a set of
benchmark categorical data sets, showing that TestCat outperforms those solutions based on
existing clusterability evaluation methods for numeric data. To the best of our knowledge,
our work provides the first way to effectively recognize the clusterability of categorical data
in a statistically sound manner.
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1 Introduction

Clustering, as a multivariate analysis tool, is widely used in diverse fields such as biology and
social sciences, aiming to identify a collection of homogeneous groups within the data. In
the absence of a unified definition for natural clusters [1–4], various properties [5] that affect
clustering quality often exhibit conflicting behavior [6], posing challenges for users when
assessing the effectiveness of clustering methods. Running different clustering algorithms on
identical input data can yield considerably distinct results. Typically, these approaches are
evaluated within the context of specific applications [7], and a proper algorithm is selected
by utilizing validity indices [8] on the produced clusters. It is essential to recognize that both
clustering algorithms and validity metrics hinge on the presence of underlying clustering
structure. Otherwise, the functions built upon that may not output meaningful results, and
utilizing these outcomes could lead to untrustworthy conclusions.

To determine whether data are clusterable before employing any clustering algorithms,
different methods have been suggested to assess clusterability [9–12], which aim to evaluate
the extent of clustering structure present within the data. Despite the inherent ambiguity
of clustering, it is evident that a data set generated from a single Gaussian distribution is
unclusterable, as any partitioning on it would be spurious. Given this observation, current
solutions [11, 13] predominantly employ a hypothesis testing approach, specifically the mul-
timodality tests in one dimension (Dip test [14] and Silverman test [15]). As the resulting
p-value provides a probabilistic interpretation, one can determine whether the underlying
structure is significant by using a significance threshold. For multivariate data sets, dimen-
sionality reduction techniques, like PCA (principal component analysis), are necessary to
project the data into one-dimensional space, enabling the application of multimodality tests.
In addition, several intuitive visual tools, such as VAT (visual assessment of tendency) [16]
and dissimilarity plots [17], can help reveal the clustering structure in data sets.

Categorical variables are pervasive in real-world data sets [18] and serve to represent qual-
itative information from a variety of fields, like marital status in sociological questionnaires
[19] and cell types in biology [20]. However, all the aforementioned clusterability measures
are designed specifically for numerical variables, as the dimensionality reduction techniques
and the hypothesis testing procedures are not suitable for handling categorical variables. For
example, in a single categorical attribute, the discrete nature of attribute values in distinct
groupings, making it inappropriate to assume that the random variable follows a unimodal
distribution. Furthermore, common distance metrics that several clusterability evaluation
methods rely on, cannot be directly applied to this type of data due to the lack of geometric
properties. Consequently, in order to employ these conventional methods, one must convert
categorical data into one-dimensional numerical values by utilizing dissimilarity measures
explicitly designed for categorical data [21], which are practically ineffective (see results
in 4.4). Hence, identifying the existence of a categorical clustering structure remains an over-
looked open challenge. When designing a clusterability evaluation method for categorical
data, it is necessary to employ new significance testing strategies that differ from what have
been deployed for numerical data.

Here, we develop a testing-based approach, TestCat, to assess the clusterability of categor-
ical data. Intuitively, in a clusterable categorical data set, samples in each cluster should be
quite similar to each other. Accordingly, many attribute values within the cluster will be posi-
tively associated with each other. Furthermore, over-expressed attribute values in one cluster
will be negatively associated with those over-expressed ones in another cluster. Hence, it can
be expected that there will be many associated attribute pairs in a clusterable categorical data
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set. Based on the above observations, we employ the Chi-squared test to measure the associa-
tion for each pair of attributes and utilize the sum of Chi-squared statistics of all attribute pairs
as the test statistic for clusterability validation.1 By imposing an independence assumption on
attribute pairs, we can derive a p-value to determine the clusterability of any categorical data
set. Validation studies conducted on real data sets have demonstrated the effectiveness and
efficiency of our method. More importantly, the empirical results have shown that commonly
used methods designed for numerical data may fail to distinguish between clusterable and
unclusterable categorical data sets.

In summary, the main contributions of this work are as follows:

• The problem of clusterability assessment for categorical data is conceptualized as an
issue of testing association among attributes. To the best of our knowledge, this is the
first attempt to develop a method specifically designed for assessing the clusterability of
categorical data.

• A p-value based on Chi-squared tests is derived as a validation index to determine
the clusterability of categorical data. Experimental results on real categorical data sets
demonstrate that the proposed method is both effective and robust, while also being
comparable in efficiency to other methods.

• Todate, how to empirically compare the performance of different clusterability evaluation
methods for categorical data is still an open problem.A feasible and reasonable pipeline is
presented and adopted in our empirical studies, which may serve as a practical validation
strategy for future research toward this direction.

The rest of this paper is organized as follows: Sect. 2 provides a review of existingmethods
that are closely related to our topic. Section3 offers a detailed description of our method.
Section4 presents the results, including experiments on real data sets and further analysis.
Lastly, Sect. 5 concludes the paper.

2 Related work

Currently, there are no clusterability evaluation methods explicitly designed for categorical
data. Consequently, we will provide separate overviews of clustering methods for categorical
data and clusterability evaluation methods for numerical data. It is important to note that
clustering algorithms for categorical data do not readily lend themselves to clusterability
evaluation methods, and at the same time, the testing-based approaches used in existing
clusterability evaluation methods are not well-suited for handling categorical data.

2.1 Categorical data clustering

Existing categorical data clustering algorithms [22], which include various approaches such
as partition-based, model-based, density-based, and linkage-based hierarchical methods, can
generally be classified into two main types based on the objective functions they employ:
k-means-type [23] and others [24, 25]. The k-means-type algorithms quantify each cluster by
calculating the sum of the squared distances [26] between each object and its cluster center
(i.e., mode) [27]. Additionally, some of these algorithms utilize categorical-to-numerical
techniques [28, 29], transforming categorical data into numerical data, and then applying

1 Notably, TestCat focuses on pairwise attribute associations and may not capture complex cluster structures
determined by higher-order interactions among multiple attributes where pairwise associations are absent.
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the original k-means algorithm. In contrast, other algorithms use measures like entropy [30,
31] or category utility [32, 33] to quantify a cluster. They assess the difference between
the observed category distribution in a cluster and the expected distribution under a random
assignment of objects to clusters.

The value of objective function is data-dependent and can vary significantly across differ-
ent data sets. The numerical value itself does not offer insights into the quality of individual
clusters or the overall partition. Instead, it represents a local optimum among a myriad of
possible partitions. Furthermore, even when we have the global optimum values, they do not
signify the presence of a clustering structure or indicate whether the clusters are obtained
from a randomized data set. Notably, methods based on category utility merely measure the
difference between the observed category distribution and the expected category distribution,
failing to provide a significance-based score in terms of p-value. Anyway, all these objective
functions can be used to evaluate the goodness of clustering results; however, they cannot be
directly used for the purpose of clusterability evaluation.

2.2 Clusterability evaluationmethods

Without relying on any specific partitioning, standard-compliant clusterability evaluation
methods have been proposed, as seen in [11, 13]. Meanwhile, algorithm-dependent methods,
such as those presented in [34, 35], have been excluded from consideration as they do not
adequately meet the practical requirements of clusterability assessment. More specifically,
the output values of the clusterability evaluation function can be used to declare data as
either clusterable or unclusterable. This goal is well achieved by testing-based approaches
that employ a p-value as the validation index, providing a statistically meaningful alternative
to other methods.

For numerical data, testing-based clusterability evaluation methods conduct the analysis
on either the original data or transformed data. A single cluster typically arises from a
homogeneous Gaussian distribution, so the presence of multiple clusters suggests a deviation
from this pattern. Accordingly, detecting multimodality in a data set with statistical methods
such as Dip [14] and Silverman [15] serves as a proxy for clusterability assessment. Similarly,
the concept that a single cluster corresponds to spatial randomness has led to the development
of the Hopkins statistic [36] and the PHI statistic [9].

When addressing categorical data, the approach to clusterability evaluation needs to be
tailored to accommodate the unique characteristics of this data type. The test statistics men-
tioned earlier are not directly applicable to the original data, as categories cannot be treated as
numerical values. Likewise, dimensionality reduction techniques typically used for numerical
data, such as PCA, are inappropriate. Instead, the analysis should start with distance mea-
sures crafted for categorical variables [21]. Following this step, dimensionality reduction
methods compatible with distance values, such as multidimensional scaling (MDS) [37], t-
distributed stochastic neighbor embedding (tSNE) [38] and uniformmanifold approximation
and projection (UMAP) [39], can be utilized.
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Fig. 1 Parallel coordinate plots are utilized to display the strong association among neighboring attribute pairs
in both the a Hayes-Roth data set and its b referenced random data. The attribute values are represented by
“chess", “sports", “stamps" or “1", “2", “3", “4". The strength of association is determined by standardized
residuals (refer to Supplementary Method 1). A standardized residual value exceeding 2 signifies a strong
positive association, while a value less than −2 indicates a strong negative association. c The ideal clustering
extracted from Hayes-Roth data set contains attributes with strong positive associations within each cluster,
while those with strong negative associations are distributed across separate clusters. Each of these clusters is
represented by specific categories (color figure online)

3 Methods

3.1 Overview of TestCat

TestCat quantifies the clusterability by measuring the strength of association between
all pairs of attributes in a given categorical data set. We will demonstrate that a marked
difference in association strength exists between clusterable and non-clusterable (random)
data. For instance, in the Hayes-Roth data set, exemplars can be grouped into three distinct
club memberships, which plays a role in facilitating psychological experiments [40]. These
qualitative attributes are hobby, educational level, age, and marital status. A conspicuous
phenomenon arises from the data (Fig. 1): the attribute values of latter three attributes display
an abundance of both positive and negative associations in the original data set (Fig. 1a).
Given this strongly associated categories across different attributes, we postulate that the
inherent clustering structure (groups) is derived from these distinct attribute combinations
as shown in Fig. 1c. Contrarily, within a random data (generated as explained in Sect. 3.3),
the values of hobby attribute (a distractor feature) may exhibit a few spurious associated
relationship with one attribute value of educational level, while there is only one positive
association among the remaining attribute values. We can thus conclude that the original
data set is composed of many associated attribute pairs, whereas artificial random data sets
lacking a significant clustering structure do not present a comparable magnitude of these
associations.

To evaluate the overall strength of association among all attribute pairs and derive a
clusterability index in terms of p-value, the TestCat approach consists of the following
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Fig. 2 The TestCat method conducts clusterability analysis on a given categorical data set by providing a
p-value. a A toy categorical data set of four attributes (“A", “B", “C", “D") yields six different attribute
pairs that need to be tested. b For each attribute pair, such as “A-B", both its observed (O) and expected (E)
3 × 2 contingency tables are constructed and used to calculate a Chi-squared test statistic. The darker cells
or lines indicate a higher frequency of co-occurrence between the two attribute values in the data set. c The
Chi-squared test statistics for all six attribute pairs, along with their respective degrees of freedom (df), are
collected and employed to derive a final p-value. d Under an imposed assumption (refer to Methods in 3.2),
a single p-value can be calculated from the sum of test statistics and its corresponding null distribution. A
boxplot of the p-values obtained from referenced random data sets is also displayed (color figure online)

steps (Fig. 2). We initiate our analysis by constructing contingency tables for each pair of
categorical variables/ attributes (e.g., “A" and “B" shown in Fig. 2b) of a given data set.
Under the assumption of independence between two attributes, the table for the expected
frequencies of attribute value pairs can be obtained from (light-colored)marginal frequencies.
We employ the Chi-squared test to evaluate the association between each pair of attributes.
Then, we collect all Chi-squared test statistics and their corresponding degrees of freedom
for each attribute pair (Fig. 2c). Finally, we use the sum of Chi-squared test statistics as final
test statistic, which will still follows a Chi-squared distribution under the assumption that all
variables for attribute pairs are independent (Fig. 2d).

The significance testing issue underlying our TestCat method can be formally formulated
as follows.Let S denote the number of all attribute pairs. For the s-th attribute pair, H0s denotes
the null hypothesis that these two attributes are independent and H1s denotes the alternative
hypothesis that they are not independent. The global null hypothesis is a composite of the
individual null hypotheses H0s for all S tests, represented as:

H0 :
S⋂

s=1

H0s,

contrasted against the global alternative hypothesis:

H1 :
S⋃

s=1

H1s, (1)
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where the global alternative hypothesis implies that at least one H0s is false. In the TestCat
framework, the global null hypothesis H0 posits that each pair of attributes exhibits no associ-
ation, where the s-th individual null hypothesis H0s aligns with the Chi-squared test affirming
the independence of the s-th attribute pair. Conversely, the global alternative hypothesis H1

indicates the presence of an association between at least one pair of attributes. Furthermore,
associations across multiple attribute pairs can cumulatively strengthen H1. To determine
whether H0 should be rejected, it is necessary to combine all p-values from S individual
Chi-squared tests into a single composite p-value.

Variousmethods exist for combining p-values [41], such as Fisher’smethod and Stouffer’s
method. These approaches create a new test statistic by integrating all p-values, which is
distinct from the statistic employed in each individual test. In our TestCat approach, we opt
for simplicity by using the sum of Chi-squared statistics of all attribute pairs as the new test
statistic, which also follows a Chi-squared distribution under the independence assumption
on different pairs of attributes.

3.2 Chi-squared test

In the Chi-squared test used in our approach, a Chi-squared statistic is obtained for each
attribute pair. Consider the s-th attribute pair 〈A, B〉s , where A = [A1, A2, · · · , A

Q(s)
a

] and
B = [B1, B2, · · · , B

Q(s)
b

] are two distinct attributes, containing Q(s)
a and Q(s)

b categories,

respectively. The observed frequencies of attribute value pairs are presented in a contingency
table as follows:

O(s) =

B1 · · · B
Q(s)
b

A1 O(s)
11 O(s)

1 j O(s)

1Q(s)
b

... O(s)
i1 O(s)

i j O(s)

i Q(s)
b

A
Q(s)
a

O(s)

Q(s)
a 1

O(s)

Q(s)
a j

O(s)

Q(s)
a Q(s)

b

. (2)

The i-th row and columnmarginal frequencies, aswell as the grand total of the contingency
table, are represented as follows:

O(s)
i · =

Q(s)
b∑

j

O(s)
i j , O(s)

· j =
Q(s)
a∑

i

O(s)
i j ,

O(s)·· =
Q(s)
a∑

i

Q(s)
b∑

j

O(s)
i j . (3)

Then, the expected frequencies can be calculated and represented as follows:

E (s)
i j = (O(s)

i · · O(s)
· j )/O(s)·· ,
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E (s) =

B1 · · · B
Q(s)
b

A1 E (s)
11 E (s)

1 j E (s)

1Q(s)
b

... E (s)
i1 E (s)

i j E (s)

i Q(s)
b

A
Q(s)
a

E (s)

Q(s)
a 1

E (s)

Q(s)
a j

E (s)

Q(s)
a Q(s)

b

. (4)

For each attribute pair, we calculate the Chi-squared statistic, χ2
(s), based on O

(s)
i j and E (s)

i j .
These individual Chi-squared statistics are then summed to yield a collective measure for all
attribute pairs. The formula is as follows:

χ2
sum =

S∑

s

χ2
(s) =

S∑

s

Q(s)
a∑

i

Q(s)
b∑

j

(O(s)
i j − E (s)

i j )2

E (s)
i j

, (5)

where S = (M
2

)
denotes the total number of all unique attribute pairs and M is the number

of attributes of the given data set. For the s-th Chi-squared statistic, the degrees of freedom
d f (s) are equivalent to the number of frequencies in the corresponding contingency table.
The aggregate degrees of freedom for the summed Chi-squared statistic χsum are calculated
as follows:

d fsum =
S∑

s

d f (s) =
S∑

s

(Q(s)
a − 1) · (Q(s)

b − 1) . (6)

Finally, a p-value is derived from the summed Chi-squared statistic and its aggregate
degrees of freedom by utilizing the Chi-squared cumulative distribution function. Note that
the sum of Chi-squared random variables follows a Chi-squared distribution if these variables
are independent [18]. Here, we impose an assumption on the independence among variables
for attribute pairs in order to obtain an analytical p-value for clusterability evaluation.

3.3 Randomized data generation

For the m-th attribute of randomized data, we assume that both the m-th attribute of original
data set (ODS) and the m-th attribute of its corresponding randomized data set (CRDS)
follow the same categorical distribution, which corresponds to the marginal distribution of
the contingency table.

To generate a CRDS, we successively generate M random permutations of data objects
in ODS. According to the m-th permutation, we specify the attribute values for the m-th
attribute for each data object in CRDS. More precisely, the corresponding attribute value for
the j-th object in the CRDS is specified to be one that are taken by the j-th object of ODS
in the permutation.

3.4 Theoretical justification

To justify our method, we need to prove that a larger test statistic (corresponding to a smaller
p-value) indicates the better clusterability of the data set. However, this task is quite difficult
in a general setting because (1) the test statistic is complicated since it is the sum of multiple
Chi-squared statistics, and (2) there is still no consensus on the definition of clusterability of
a data set. Nevertheless, we try to provide a theoretical justification on a special case that the
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data set is only composed of two categorical attributes. More precisely, we first investigate
the case that each attribute is composed of only two distinct attribute values. Then, we extend
the analysis to the general case that each attribute can have more than two attribute values.

3.4.1 Special case: binary categorical attributes

Suppose that these two attributes are denoted by A = {A1, A2} and B = {B1, B2}, respec-
tively. The corresponding contingency table is given as follows, where Ci j is the number of
co-occurrence of attribute values Ai and Bj . Obviously, such a data set is composed of four
natural clusters, where each cluster is characterized by A = Ai and B = Bj . In other words,
each cluster consists of Ci j identical attribute value pairs. Under this setting, it is easy to
see that the distances among samples within each cluster are all zeros. Hence, to quantify
the clusterability of such a data set, we only need to check the distances between samples
from different clusters. More precisely, the following measure is employed to quantify the
clusterability of a data set.

B1 B2

A1 C11 C12 C1·
A2 C21 C22 C2·

C·1 C·2 C··

(7)

Definition 1 Let the data set DS be characterized by the contingency table shown in 7. The
normalized separation of DS, denoted as Sepnorm(DS), is defined as follows:

Sepnorm(DS) = Sep(DS)

Stotal(DS)
, (8)

where Sep(DS) is the sum of all pairwise inter-cluster Hamming distances and Stotal is the
number of all pairwise inter-cluster samples. The concise expression for Sep(DS) can be
calculated as follows:

Sep(DS) = Sep(C11,C12) + Sep(C11,C21) + Sep(C11,C22)

+ Sep(C12,C21) + Sep(C12,C22) + Sep(C21,C22)

= C11C12 + C11C21 + 2C11C22 + 2C12C21 + C12C22 + C21C22

= C11(C·· − C11) + C22(C·· − C22) + 2C12C21

. (9)

GivenC22 = C·2−(C1· −C11) and C12C21 = (C1· −C11)(C·1−C11), we have Sep(DS) =
C11(C·· −C11) + (C11 −C1· +C·2)(C·· −C11 +C1· −C·2) + 2(C1· −C11)(C·1 −C11). If
we set C11 = n,C·· = N ,C1· = x,C·1 = y,C·2 = z, then we can write as:

Sep(DS) = n(N − n) + (n − x + z)(N − n + x − z) + 2(x − n)(y − n)

= Nn − n2 + (N − n + x − z)n − x(N − n + x − z)

+ z(N − n + x − z) + 2xy + 2n2 − 2(x + y)n

= (2N − 2z − 2y)n + (z − x)N − x2 − z2 + 2x(y + z)

.
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Given y + z = C·1 + C·2 = C·· = N , we have

Sep(DS) = (z − x)N − (x2 + z2) + 2xN

= (x + z)N − ((x + z)2 − 2xz)

= (N − x − z)(x + z) + 2xz

= (C·· − C1· − C·2)(C1· + C·2) + 2C1·C·2

. (10)

Now we turn to express another element Stotal(DS) as follows:

Stotal(DS) = S(C11,C12) + S(C11,C21) + S(C11,C22)

+ S(C12,C21) + S(C12,C22) + S(C21,C22)

= C11C12 + C11C21 + C11C22 + C12C21 + C12C22 + C21C22

= (
C11(C·· − C11) + C22(C·· − C22) + 2C12C21

)

− (C12C21 + C11C22)

= Sep(DS) − (C12C21 + C11C22)

. (11)

Lemma 1 Given a 2 × 2 contingency table with fixed marginal frequencies, if C11 exceeds
λ = 2C1·+C·1−C·2

4 , then the Sepnorm(DS) is directly proportional to C11: C11 > λ →
Sepnorm(DS) ∝ C11.

Proof Given that Sepnorm(DS) = Sep(DS)

Sep(DS)−(C12C21+C11C22)
where Sep(DS) is a constant

under fixed marginal frequencies, Sepnorm(DS) is only dependent on the term (C12C21 +
C11C22). Thus, we rewrite (C12C21 + C11C22) with C11 as the only variable as follows:

C12C21 + C11C22 = C11(C·2 − (C1· − C11))

+ (C1· − C11)(C·1 − C11)

= C·2C11 − C1·C11 + (C11)
2

+ C1·C·1 − C1·C11 − C·1C11 + (C11)
2

= 2(C11)
2 + (C·2 − 2C1· − C·1)C11 + C1·C·1

= f (C11)

. (12)

Taking the derivative of f with respect toC11, we get f ′(C11) = 4C11+(C·2−2C1·−C·1)
and find the critical point: λ = 2C1·+C·1−C·2

4 .
Thus, when C11 > λ, f (C11) is an increasing function. Now, since Sepnorm(DS) is

functionally dependent on f (C11), it follows that the clusters become more distinct in terms
of separation asC11 increases, thereby supporting the claim that a largerC11 within the 2×2
contingency table corresponds to more distinct clusters. ��

Lemma 2 Given a 2 × 2 contingency table with fixed marginal frequencies, assume without
loss of generality that C11 is greater than its expected frequency E11. Under this condition, the
Chi-squared statistic χ2(DS) is directly proportional to C11: if C11 > E11, then χ2(DS) ∝
C11.

Proof Given the condition C11 > E11 = C1·C·1
C·· , we have C··C11 −C1·C·1 > 0. Furthermore,

according to the definition of the Chi-squared statistic for a 2×2 contingency table, we have

χ2(DS) = C··(C11C22−C12C21)
2

C1·C·1C·2C2· = CDS(C11C22 − C12C21)
2 where CDS is a constant under
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fixed marginal frequencies. The χ2(DS) is only dependent on the squared term (C11C22 −
C12C21)

2. Thus, we can express (C11C22−C12C21)withC11 as the only variable as follows:

C11C22 − C12C21 = C11(C·2 − (C1· − C11)) − (C1· − C11)(C·1 − C11)

= C·2C11 − C1·C11 + (C11)
2

− C1·C·1 + C1·C11 + C·1C11 − (C11)
2

= (C·2 − C1· + C1· + C·1)C11 − C1·C·1
= C··C11 − C1·C·1
> 0

. (13)

Now that we have established C11C22 − C12C21 = C··C11 − C1·C·1 according to Eq.13.
Under the given condition C11 > E11, (C··C11 − C1·C·1)2 = (C11C22 − C12C21)

2 is an
increasing function. This indicates a stronger association between attributes A and B as C11

increases, thereby supporting the claim that a larger C11 within the 2 × 2 contingency table
is indicative of an increased strength of association. ��
Theorem 1 Given a 2 × 2 contingency table with fixed marginal frequencies, for any two
data sets DS1 and DS2 sampled according to these marginal distributions, if χ2(DS1) >

χ2(DS2) > λ∗ = CDS
(
C··λ − C1·C·1

)2
where CDS = C··

C1·C·1C·2C2· and λ = 2C1·+C·1−C·2
4 ,

then it follows that Sepnorm(DS1) > Sepnorm(DS2).

Proof Let us denote p andq as the count variables in the 2×2 contingency table corresponding
to the positively associated cell C11 for data sets DS1 and DS2, respectively. Since the
marginal frequencies are fixed, the Chi-squared statistics χ2(DS1) and χ2(DS2) along with
the same constant can be expressed in terms of p, q asCDS(C·· p−C1·C·1)2 andCDS(C··q−
C1·C·1)2 according to Eq.13. Then, we can rewrite the condition χ2(DS2) > λ∗ as follows:

χ2(DS2) > λ∗ ⇒ CDS(C··q − C1·C·1)2

> CDS(C··λ − C1·C·1)2

⇒ C··q − C1·C·1
> C··λ − C1·C·1

⇒ q > λ = 2C1· + C·1 − C·2
4

. (14)

Combining the results from Lemmas 1 and 2 with Eq.14, we finalize the proof as fol-
lows: Lemma 2 provides that χ2(DS) is directly proportional to C11. Consequently, given
χ2(DS1) > χ2(DS2) > λ∗, we apply Eq.14 to deduce that p > q > λ. Furthermore,
Lemma 1 suggests that for C11 > λ, which is satisfied here as p > q > λ, the normalized
separation measure Sepnorm(DS) will increase. Therefore, we can assert that Sepnorm(DS1)
is greater than Sepnorm(DS2). ��

3.4.2 Extension to general categorical attributes

We now extend our theoretical justification to the case where the two attributes A and B
are categorical variables with more than two categories. Let A = {A1, A2, · · · , Ar } and
B = {B1, B2, . . . , Bs}, where r and s are the numbers of distinct categories of A and B,
respectively.

An important observation is that the Hamming distance between two samples computed
on the original categorical variables is identical to the Hamming distance computed after
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one-hot encoding these variables. Given this equivalence, we can conceptually extend our
previous results from the binary case to the general case. The Chi-squared statistic for the
contingency table of A and B is:

χ2(DS) =
r∑

i=1

s∑

j=1

(
Ci j − Ei j

)2

Ei j
, (15)

where Ci j is the observed frequency of the category pair (Ai , Bj ), and Ei j = Ci ·C· j
N is the

expected frequency under independence.
A larger Chi-squared statistic indicates stronger associations between certain categories

of A and B, which promotes the formation of clusters with higher intra-cluster similarity
and greater inter-cluster separation. Since each summation term in the equation above can be
interpreted as the case of binary categorical attributes, we can infer that this cumulative larger
Chi-squared statistic corresponds to a higher normalized separation measure Sepnorm(DS),
indicating better clusterability of the data set.

This extension suggests that our method is applicable to attributes with more than two
categories, and that the relationship between the χ2(DS) and the Sepnorm(DS) holds in
the general case. However, we acknowledge that deriving an explicit analytical form in this
general setting is complex and challenging, requiring more in-depth analysis and effort.

4 Results

4.1 An illustrative example for two attributes

In the context of a 2 × 2 contingency table, under certain mild conditions, we have demon-
strated in Theorem 1 that one data set with a larger Chi-squared test statistic will exhibit
a better clusterability. As an illustrative example, let us consider a series of data sets, each
containing 100 students, with two attributes: “grades in math” and “grades in physics”, where
the co-occurrence of categories “Good-in-Math” and “Good-in-Physics” indicates a positive
association, represented by the count C11, consistent with the notation used in Sect. 3.4.

We setC11 to be 20, 15, and 10 on three different data sets, each with fixedmarginal distri-
butions (C·1,C·2,C1·,C2·). These data sets are designated as DS1, DS2, DS3, respectively.
The contingency tables for these data sets are as follows:

DS1 Good-in-Physics Poor-in-Physics

Good-in-Math 20 (Cluster 1) 5 (Cluster 2) 25
Poor-in-Math 20 (Cluster 3) 55 (Cluster 4) 75

40 60 100
DS2 Good-in-Physics Poor-in-Physics
Good-in-Math 15 (Cluster 1) 10 (Cluster 2) 25
Poor-in-Math 25 (Cluster 3) 50 (Cluster 4) 75

40 60 100
DS3 Good-in-Physics Poor-in-Physics
Good-in-Math 10 (Cluster 1) 15 (Cluster 2) 25
Poor-in-Math 30 (Cluster 3) 45 (Cluster 4) 75

40 60 100
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From the above contingency tables, we can calculate their corresponding χ2, p-value and
Sepnorm as follows:

Measure DS1 DS2 DS3

χ2 22.2 5.6 0
p-value 2.4E-06 0.02 1
Sepnorm 1.39 1.31 1.27

Consistent with Theorem 1, if χ2(DS1) > χ2(DS2) > χ2(DS3), it follows that more
distinct clusters can be formed in DS1 than in DS2 and DS3, as demonstrated by the inequal-
ity Sepnorm(DS1) > Sepnorm(DS2) > Sepnorm(DS3). Notably, DS3 represents completely
randomized data since each cell count equals its expected value, akin to a single, indivis-
ible cluster from a Gaussian distribution in numerical data, which suggests an absence of
clustering structure. Furthermore, our method provides a p-value, inherently establishing a
statistically sound threshold (e.g., p-value≤ 0.01), at which our method can determine that
only DS1 is clusterable. In DS1, 75 students can be perfectly grouped into two clusters:
“Good-in-Physics & Good-in-Math” and “Poor-in-Physics & Poor-in-Math”. However, in
DS2 and DS3, with only 65 and 55 students, respectively, able to be grouped, all grades are
not considered to have sufficient association.

Table 1 The properties of 18 UCI data sets

Data set Abbr. #Objects #Attributes #Categories

Lenses Ls 24 4 9

Lung Cancer Lc 32 56 159

Soybean (Small) So 47 21 58

Zoo Zo 101 16 36

Promoter Sequences Ps 106 57 228

Hayes-Roth Hr 132 4 15

Lymphography Ly 148 18 59

Heart Disease Hd 303 13 57

Solar Flare Sf 323 9 25

Primary Tumor Pt 339 17 42

Dermatology De 366 33 129

House Votes Hv 435 16 48

Balance Scale Bs 625 4 20

Credit Approval Ca 690 9 45

Breast Cancer Bc 699 9 90

Mammographic Mass Mm 824 4 18

Tic-Tac-Toe Tt 958 9 27

Car Evaluation Ce 1728 6 21
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4.2 Data sets and validation strategies

To illustrate and evaluate TestCat, we initiate our study with a selection of commonly used
categorical data sets from the UCI repository [42], many of which are likely to have natural
clustering structure drawn from various subject areas including life, social, physical, financial
fields. The properties of 18 UCI data sets utilized in our study are outlined in Table 1.

Since there are still no recognized benchmark data sets and validation methodology for
evaluating the clusterability of categorical data sets, we adopt the following strategy in the
performance comparison. Our approach presupposes that all data sets from UCI are cluster-
able, while their corresponding randomized data sets lack a clustering structure. The details
of our validation strategy are elaborated below.

For each original data set (ODS), we generate its corresponding randomized data set
(CRDS) (generated as explained in Sect. 3.3). If a data set has a clustering structure, an
effective clusterability evaluation method should be able to recognize its ODS as being
clusterable while identifying its CRDS as being unclusterable. That is, each ODS is a true
positive (clusterable) and all their CRDSs are false positives (unclusterable). Conversely, for
a data set devoid of a clustering structure, it is desirable to correctly identify both its ODS and
CRDS as being unclusterable. In all scenarios, the ability to discern random data constitutes
an essential requirement for any trustworthy clusterability evaluation method.

Since CRDS is not unique, we generate a representative CRDS from a pool of multiple
CRDSs for each ODS: Initially, we generate 101 randomized data sets for each ODS. The
distribution of p-values (calculated by TestCat) of these 101 randomized data sets is shown
in Supplementary Figure 1. In most cases, the p-values of these 101 CRDSs exceed 0.01,
as displayed in Supplementary Table 1. From these pool, we obtain a median p-value. Sub-
sequently, we generate additional CRDSs. The chosen CRDS is the first one sequentially
generated over multiple runs, with its p-value deviating no more than 0.05 from the median.

4.3 Comparedmethods

Since there are still no clusterability evaluation methods that are specially developed for
categorical data, we adopt and repurpose methodologies typically applicable to numerical
data [11]. Thesemethods consist of twokey elements: obtainingone-dimensional transformed
values and conducting multimodality tests. Dip test (abbreviated as Dip) and Silverman
test (abbreviated as Silv) are among the commonly used multimodality tests [11, 13]. To
obtain the one-dimensional representation, onemethod is to acquire pairwise distance through
measures specifically crafted for categorical data, and the other is to employ similarity-
preserved dimensionality reduction. In our experiment, we trialed 20 different categorical
distance measures [21], and subsequently applied Dip and Silv tests, denoted as Dip-dist
and Silv-dist, respectively. When deploying similarity-preserved dimensionality reduction
techniques, we utilized MDS [37], tSNE [38] and UMAP [39], denoted as MDS Dip/ Silv,
tSNE Dip/ Silv, and UMAP Dip/ Silv, respectively.

Here, we clarify the inherent stochastic factors in some of these dimensionality reduction
methods and their implications on our experimental setup. For MDS, we leverage a version
that incorporates a common heuristic strategy to select the solution with the lowest stress
value from several configurations. The initial configuration is set randomly. Analogously,
tSNE and UMAP involve randomness in their optimization processes and the initialization
of embedding. Therefore, these techniques might converge to different local optimal solu-
tions, resulting in varied outputs across multiple runs. On the contrary, PCA and SPCA are
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Fig. 3 Identification results of TestCat and existing methods without dimensionality reduction on 18 UCI
data sets (including original data sets and corresponding randomized data sets). a The barplots of p-values
produced by TestCat. To better visualize smaller p-values that approach or equal 0, and to distinguish the
significance level of 0.01 through the y-axis (y = 0), we use transformed p-values, defined by the formula:
y = log(p-value/0.01 + 0.000001) − log(0.000001). b Dip and Silverman have been applied to distance
values obtained from 20 different categorical distance measures (detailed descriptions of all these measures
can be found in reference [43]), hence constituting two sets of comparison methods: Dip-dist and Silv-dist.
The outcomes of these comparisons are illustrated in heatmap. c We evaluate TestCat against Dip-dist and
Silv-dist by counting the number of correctly identified ODSs and CRDSs under the significance level of 0.01.
The boxplots describe the count distributions of variants of Dip-dist and Silv-dist derived from the 20 distance
measures employed. Outliers are denoted in accordance with the specific distance measure used (color figure
online)

deterministic algorithms that invariably generate consistent outputs for a given set of input
data. Given these characteristics, in our study, we execute MDS, tSNE, and UMAP multiple
times to account for their intrinsic stochasticity. For PCA and SPCA, a single run is sufficient
due to their deterministic nature.

In addition to the aforementioned comparative methods, certain advanced embedding
methods such as CDE and CDC_DR [29] are designed to transform categorical data into
numerical data for clustering tasks. This transformation enables the direct application of
conventional clusterability evaluation techniques, which are typically suitable for numerical
data. However, these categorical-to-numerical methods tend to generate high-dimensional
numerical representations. To tackle this issue in practice, as suggested in reference [13], we
employ dimensionality reduction tools such as PCA and sparse principal component analysis
(SPCA). These techniques allow us to condense the high-dimensional data into manageable
one-dimensional values. We then apply Dip and Silv on that, referred to as PCA Dip/ Silv
and SPCA Dip/ Silv, respectively.

4.4 Performance comparison results

We now turn to the evaluation and comparison of TestCat with other clusterability evalu-
ation methods, employing the validation strategy described above. Our investigation reveals
that, using TestCat for evaluation, most of these UCI data sets are identified as being clus-
terable and all their CRDSs are identified as being unclusterable (see Fig. 3a and Table 2), a
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Table 2 The clusterability
analysis results of TestCat on 18
UCI data sets

Data set ODS CRDS
#Pairs p-value #Pairs p-value

Ls 0 (0%) 1 2 (6.7%) 0.32

Lc 1167 (9.4%) 5E-111 570 (4.6%) 0.10

So 472 (29.8%) 7E-248 62 (3.9%) 0.45

Zo 306 (51.0%) 2E-267 26 (4.3%) 0.40

Ps 1537 (6.0%) 5E-26 1141 (4.5%) 0.24

Hr 21 (25.0%) 1E-4 2 (2.4%) 0.45

Ly 358 (22.2%) 8E-195 82 (5.1%) 0.55

Hd 250 (17.0%) 1E-79 63 (4.3%) 0.55

Sf 133 (49.2%) 5E-180 15 (5.6%) 0.47

Pt 250 (30.3%) 1E-101 56 (6.8%) 0.68

De 2719 (33.7%) 0 330 (4.1%) 0.54

Hv 585 (54.2%) 0 55 (5.1%) 0.54

Bs 0 (0%) 1 13 (8.7%) 0.43

Ca 219 (26.7%) 0 36 (4.4%) 0.65

Bc 1296 (36.0%) 0 156 (4.3%) 0.62

Mm 44 (36.4%) 2E-194 5 (4.1%) 0.54

Tt 106 (32.7%) 4E-106 18 (5.6%) 0.42

Ce 0 (0%) 1 10 (5.5%) 0.47

“#Pairs” indicates the number of pairs of attribute values exhibiting
strong positive or negative association, with the percentage shown in
parentheses representing the proportion of such associated pairs. The
distribution of these #Pairs from CRDSs (101 runs) for each ODS is
provided in Supplementary Figure 1b

conclusion not necessarily guaranteed by existingmethods (see Fig. 3c, Fig. 4, Supplementary
Figure 2 and Supplementary Figure 3). More details are as follows.

Initially, we examine existing methods that circumvent dimensionality reduction. As
depicted in Fig. 3b, none of these methods manage to identify all CRDSs as being unclus-
terable. Among twenty measures evaluated, only six successfully identify more than half of
all target CRDSs (#CRDS ≥ 10): both Dip-dist and Silv-dist methods based on Lin1, along
with Silv-dist method based on Good1, Good4, Goddall1, Goddall4, and Of. When it comes
to identifying more than half of all ODSs as being clusterable (#ODS ≥ 10), most methods
accomplish this feat, except for Dip-dist using Lin1 and Silv-dist usingGood1, Goddall1, and
Of. Intriguingly, Dip-dist method utilizing Hamming distance correctly identifies every ODS
but remarkably fails to recognize any CRDSs. As demonstrated in Fig. 3c), no single method
is able to simultaneously and correctly recognize all ODSs and CRDSs. More precisely, we
can employ the count of data sets in the intersection of correctly identified ODS and CRDS
as a quantitative indicator. Even the most effective existing method, Dip-dist based on Lin1,
could only identify an intersection set with five data sets: Zo, Hv, Ca, Bc, and Tt.

In light of above experimental results, Hamming and Lin1 distances display distinguished
performance with respect to at least one or two of the three count metrics (as represented
by the outliers in Fig. 3c): number of correctly identified ODS, number of correctly identi-
fied CRDS, and the size of intersection set. Nevertheless, all these methods cannot correctly
identify all CRDSs, thus failing to meet the trustworthy standard required to discern ran-
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Fig. 4 Count of correctly identified data sets by using TestCat and compared methods. a Compared methods
via dimensionality reduction (running 101 times for each data set) based onHamming distance. The resulting
median p-value from 101 runs is used for determining whether each target data set is clusterable. The experi-
mental results based on Lin1 distance are displayed in Supplementary Figure 2. b Categorical-to-Numerical
methods via CDC_DR embedding. We implemented the CDC_DR embedding on each categorical data set to
generate its numerical representation. Following this transformation, we utilized PCA or SPCA to further con-
dense this numerical data. The experimental results based on CDE embedding are displayed in Supplementary
Figure 3

dom data. Consequently, we leverage Hamming distance and Lin1 in the methods based on
dimensionality reduction in the performance comparison.

For thosemethods based on dimensionality reduction,we executeMDS/ tSNE/UMAP101
times to account for their stochasticity. We then use the median p-value (see Supplementary
Table 2.1 and Supplementary Table 2.2) as the identification result of each data set (the
detailed p-values of each method on ODSs and CRDSs are displayed in Supplementary
Figure 4.1a and Supplementary Figure 4.2a). As demonstrated in Fig. 4a and Supplementary
Figure 2, several methods, including MDS Silv based on Hamming distance and Lin1, tSNE
Silv based on Hamming distance, and MDS Dip based on Lin1, are capable of identifying
all CRDSs correctly. However, these methods do not achieve a satisfactory level of success
on identifying most ODSs as being clusterable, thereby revealing their potential limitations
as clusterability evaluation methods. Moreover, as displayed in Supplementary Figure 4.1b
and Supplementary Figure 4.2b, the methods based on dimensionality reduction generally
tend to classify only six data sets, namely So, Zo, De, Hv, Ca, and Bc, as being clusterable.

For the transformation of categorical data into numerical data, it is important to note that
such process might result in the loss of some information. As shown in our experiments (see
Supplementary Table 3.1 and Supplementary Table 3.2), these embedding-based methods
did not achieve better performance than the dimensionality reduction-based methods. As
illustrated in Fig. 4b and Supplementary Figure 3, they can identify the majority of ODSs
as being clusterable, yet struggle to reliably recognize most CRDSs as being unclusterable.
Furthermore, all embedding-based methods also fall short in identifying more than half of
the target data sets as indicated by the intersection set.

In order to elucidate rationale of our validation strategy used above, we employ visu-
alization tools to inspect different types of data sets. As depicted in Fig. 5, we present the
visualization results on eight data sets by using three tools: scatter plots in reduced two-
dimensions space (Fig. 5a), iVAT plots (Fig. 5b), and dissimilarity plots (Fig. 5c). From the
visual representations of ODSs and CRDSs, it can be observed that not all ODSs (e.g., Ls,
Bs, Ce) has clearly observed clustering structure. This partially illustrate why our method
regards the ODS of Ls, Bs and Ce as being unclusterable. The visualization results based on
iVAT for the remaining ten data sets are provided in Supplementary Figure 5.
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Fig. 5 Illustration of clustering structure underlying 8 UCI categorical data sets by using visual assessment.
All plots are derived from the Hamming distances between objects in the data sets. Here, for each original
data set, we generate its corresponding randomized data set, which undoubtedly should have no clustering
structure (detailed procedures for generating the random data are presented in Sect. 3.3). a Scatter plots of
tSNE and MDS, where different colors/ shapes represent the class labels provided in the original data sets.
Note that duplicate objects have been removed before running tSNE and MDS. Both b iVAT plots and c
Dissimilarity plots display the reordered distances obtained through R Package “seriation”. Potential clusters
can be identified as multiple densely shaded blocks along the diagonal, where each square is large enough
to accommodate a sufficient number of objects. The results from applying iVAT plots to the other 10 UCI
categorical data sets are displayed in Supplementary Figure 5 (color figure online)

4.5 Analysis of TestCat

4.5.1 Uniformity

Our clusterability evaluationmethod,while differing fromwidely usedmethods for numer-
ical data in terms of its null hypothesis and test statistic, still relies on the principle of
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Fig. 6 Comparison of empirical CDFs for p-values of attribute pairs with a Uniform CDF. Such comparisons
for each data set are provided in Supplementary Figure 6 (color figure online)

uniformity. For randomized categorical data, the association strength between any attribute
pairs is expected to be uniformly distributed across the [0, 1] interval, provided the associ-
ation strength is arbitrary. This principle holds regardless of the data’s scale, ensuring that
the p-values for attribute pairs are unbiased and reflect random behavior when there is no
conclusive evidence to suggest the presence of a cluster structure.

To validate this, we re-analyzed 15 of the 18 real-world data sets (excluding Ls, Bs, and
Ce) that were identified as being clusterable by our TestCat in previous experiments. We
compared the empirical cumulative distribution functions (CDFs) of these p-values (prior
to aggregation into the final p-value) from the set of ODSs and their representative CRDSs
to a theoretical Uniform CDF over the interval [0, 1], as shown in Fig. 6. According to
the Kolmogorov–Smirnov test, the CDF from the CRDSs showed no significant difference
from the Uniform distribution at a significance level of 0.05 or 0.01. In contrast, the CDF
from the ODSs exhibited significant deviations from uniformity. This confirms that the p-
values measuring the association strength between attribute pairs from randomized data are
approximately uniformly distributed.

Furthermore, our TestCat accurately captures significant associations, aggregating from
the attribute-pair level to the data set level, with the overall p-value potentially skewing
toward smaller or larger values depending on the observed CDF. Specifically, when strong
associations are present among attribute pairs, resulting in many CDF values gathering at
the lower tail, as shown in Fig. 6, the TestCat derives an overall p-value that tends to skew
toward smaller values. However, such skew is unlikely to occur when the associations among
attribute pairs in randomized data are uniformly distributed, ensuring that extreme small final
p-values are avoided.
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Fig. 7 Robustness of TestCat in determining clusterability against increasing randomness

4.5.2 Robustness

Agood clusterability evaluationmethod should demonstrate robustness across various ran-
domized data sets, correctly identifying them as being unclusterable in most circumstances.
Our approach exemplifies this property using the association strength among attributes. As
illustrated in Supplementary Figure 1b, the majority of strongly associated attribute pairs
fall within the relatively narrow range across the 101 CRDSs for each ODS. In contrast,
the proportion of associated attribute pairs for clusterable ODS markedly exceed this value,
displaying a broader distribution range. As a result, the p-value for randomized data sets
consistently exceed that of the clusterable ODS, implying a clear distinction between the
ODS and these randomized data sets (refer to Fig. 3a).

As depicted in Supplementary Figure 7a, using a representative CRDS for each ODS,
we observe a clear distinction in the number of positively associated attribute value pairs
between the ODS and CRDS across eight data sets. These situations can be classified into
two types: one where the number of associated pairs of the ODSmarkedly exceeds that of the
CRDS and another where the number of associated pairs of the ODS is zero (data sets Ls, Bs
and Ce). The former scenario aligns with our criteria for identifying clusterable ODS, while
the latter leads our method to compute a p-value of 1, marking them as unclusterable (an
outcome that is consistent with the evidence provided by iVAT). Such plots on the number
of associated pairs for the remaining data sets are displayed in Supplementary Figure 8. In
all these cases, the number of associated pairs for the ODS is evidently greater than that for
the CRDS, even though the difference is less pronounced in the data sets Lc and Ps. More
specifically, as shown in Supplementary Figure 7b, the proportion of associated attribute
pairs for clusterable ODSs exceeds 20% in most cases. In contrast, the proportion for CRDSs
is below 8.7% in all cases.

In addition to demonstrating TestCat’s robustness in distinguishing between the cluster-
ability of ODS and CRDS, we further extend our analysis to a simulation study examining
TestCat’s performance under conditions of partial randomness. We generate locally random-
ized data in the same manner as described in Sect. 3.3, but instead of shuffling all objects
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Fig. 8 Runtime for 50 iterations of each method across 18 UCI data sets. The values within each cell of the
heatmap represent the actual runtime in seconds. The coloring of the heatmap is determined by the normalized
runtime: for each data set, the runtime is scaled to the range (0,1] by dividing it by the maximum runtime. The
corresponding color scale is illustrated in the legend on the right side (color figure online)

across attributes, we shuffle only a fraction of them. As shown on the horizontal axis of
Fig. 7, we progressively shuffle 1%, 2%, and up to 100% of the objects, with 100% corre-
sponding to the generation of a CRDS. Each shuffle is independently repeated 100 times,
and the vertical axis represents the proportion of cases that TestCat identifies as being clus-
terable. The results indicate that when only a small fraction of objects are randomized, the
derived p-values remain below the significance level of 0.01, identifying the cases as being
clusterable with high accuracy. As more objects are shuffled, the strength of associations
diminishes, and TestCat gradually fails to accurately detect clustering structures, classifying
more cases as being unclusterable. When 100% of the objects are shuffled (equivalent to
generating CRDS), these cases are consistently identified as being unclusterable. Notably,
even when nearly 50% or more of the objects are shuffled, TestCat can still perfectly identify
the cases as being clusterable with 100% accuracy (as shown by the horizontal line in each
plot of Fig. 7) based on most of the clusterable data sets: Ls, So, Zo, Ly, Sf, De, Hv, Ca,
Bc, Mm and Tt. This highlights TestCat’s robustness against increasing randomness across
a wide range of different clusterable data sets.

4.5.3 Efficiency

Efficiency is crucialwhen a clusterability evaluationmethod is applied to large-scale data sets.
To underscore this point, we assessed TestCat’s runtime on 18 UCI data sets and compared
it with other methods, specifically those based on dimensionality reduction. As illustrated in
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Fig. 8, TestCat showcased superior speed, topping the charts on eight specific data sets: Ls,
Hr, Ly, Sf, Bs, Ca, Mm, and Ce. Notably, on 15 data sets, excluding Lc, Ps, and De, TestCat
executed in less than 25% of the duration required by the slowest competitor. Overall, in
comparison with the fastest benchmark, MDS Dip, TestCat achieved a runtime that was
approximately 40% of its execution time.

4.6 Code and data availability

TestCat is available on GitHub (https://github.com/hulianyu/TestCat). Detailed guidelines
for its implementation, as well as for the execution of the compared methods, are provided.
Information on the parameters used in the codes of the compared methods is presented in
Supplementary Note 1.

The complete collection of 18UCI data sets employed in our analysis is publicly accessible
at https://archive.ics.uci.edu/datasets (Attribute Type = Categorical), with their properties
illustrated in Table 1. All utilized CRDSs, in addition to the numerical representations for
each ODS and CRDS, can be found in the same GitHub repository hosting TestCat.

5 Conclusions and Discussions

Clusterability evaluation plays a crucial role in cluster analysis. The importance of this step
is underscored by its ability to authenticate the validity of clustering results, ensuring that
identified patterns truly originate from the data rather than being mere by-product of the
clustering process. More explicitly, if data are determined as being unclusterable, the use of
any clustering algorithm would invariably lead to meaningless results.

To address the clusterability evaluation issue for categorical data, we introduce a testing-
based method by employing the association relationship among categorical attributes. To the
best of our knowledge, this is the first piece of work to tackle the clusterability evaluation
problem for categorical data. Compared to existing solutions that are not specially developed
for categorical data, our TestCat approach not only demonstrates superior performance but
also solves such a challenging issue in an intuitive, simple and elegant manner.

It is undeniable that ourmethod harbors certain limitations: (1) The independence assump-
tion [44] among attribute pairs, as well as the use of the Chi-squared approximation (further
discussed in Supplementary Note 2), generally do not hold. If we do not adhere to these
assumptions, the deviation of an analytical p-value for significance assessment would be a
challenging issue. (2) The Chi-squared test may not be the best choice for association testing
in the context of clusterability evaluation, we need to further check other more appropriate
methods. (3) Association testing may lack validity for data structures with intricate attribute
interactions. For instance, in the Bs (Balance Scale) data set, cluster formation may rely on
multi-attribute interactions beyond just pairwise associations. Additionally, in the Ce (Car
Evaluation) data set, the absence of associations between individual attributes does not neces-
sarily imply there are no clusters, as these hierarchical attributes could be strongly associated
with a cluster variable. These scenarios, as detailed in Supplementary Note 3, indicate the
need for developing alternative methods capable of capturing such complex relationships.

Finally, our research efforts in this article hint at several aspects. First, it highlights the
importance of the clusterability evaluation issue for categorical data, which is overlooked
during the past decades. Second, we empirically demonstrate the fact that existing solutions
for numeric data cannot solve this problem very well, indicating that it is still necessary to
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develop new algorithms toward this direction. Finally, there are many directions for future
research, ranging from the refinement of TestCat to the development of brand-new methods.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10115-024-02317-x.
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