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Categorical data clustering is a fundamental data mining problem, which has been extensively studied during
the past decades. To date, many effective clustering algorithms for categorical data are available in the
literature. However, almost all existing categorical data clustering algorithms did not address the issue of the
statistical significance of detected clusters. In particular, how to assess the statistical significance of a set of
non-overlapping categorical clusters still remains unaddressed. In this article, we formulate the categorical
data clustering problem as a multiple hypothesis testing problem, where the null hypothesis is that each
attribute is independent of the given partition of clusters. Then, all individual ?-values from different attributes
are integrated to obtain a consensus ?-value through statistical meta-analysis. Thereafter, a significance-based
clustering algorithm is proposed in which the combined ?-value is efficiently optimized in an indirectly and
incremental manner. Experimental results on 25 real-world datasets demonstrate that our method is capable of
achieving comparable performance to state-of-the-art categorical data clustering algorithms. Furthermore, our
method has a good capability of determining whether there really exists a clustering structure and assessing
whether a given set of clusters is statistically significant.
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1 Introduction
Categorical datasets are widely accessible in many disciplines, such as bioinformatics [4] and
social sciences [5]. Each attribute in this data type comprises a set of discrete values that are not
quantitatively comparable. For example, eye color is a commonly used categorical variable that
can take values {Brown,Amber,Hazel,Green, Blue,Gray}. As an important multivariate statistical
technique, cluster analysis of categorical data aims to divide objects with categorical attributes into
compact groups in an unsupervised manner [31]. To identify compact clusters from categorical
datasets, many effective methods have been proposed, e.g., partitioning clustering [51], hierarchical
clustering [87], and model-based clustering [26]. Among these existing categorical data clustering
algorithms, partitioning clustering algorithms are probably the most widely investigated clustering
methods [7, 89, 95].

Existing partitioning algorithms for categorical data produce a set of clusters primarily by
optimizing an objective function [6] that is typically defined based on a specific (dis)similarity
measure [15, 70, 89, 95]. More precisely, they usually employ a :-means-type objective function
[8, 49, 51]. Thus, it becomes crucial for such algorithms to provide a powerful representation [76]
or an appropriate distance measure [15] for categorical objects. While these types of clustering
algorithms are effective in dealing with complex categorical data, it is not guaranteed to produce
meaningful clustering results. That is, they do not provide statistical robustness against spurious
patterns, i.e., identifying whether the clustering results are statistically significant.

To date, many methods have been proposed to assess the statistical significance of clustering
results based on different types of hypothesis testing procedures (e.g., [1, 18, 34, 38, 40, 48, 67,
72, 86]). Unfortunately, almost all of them are designed for numerical data rather than categorical
data. That is, it is non-trivial or not feasible to extend these approaches to handle categorical data.
For example, a cluster of numerical objects is typically modeled by a single multivariate Gaussian
distribution [66], whereas to model categorical objects requires a technique that can portray a
discrete distribution. One notable significance-based categorical data clustering method [88] tries
to evaluate each individual categorical cluster separately. As a result, it cannot be directly applied
to assess the standard clustering result of a set of non-overlapping categorical clusters.

In this article, we focus on validating whether a partition of non-overlapping categorical clusters
is true or not in a statistically sound manner. Our research is motivated by the following key
observations. First of all, although numerous categorical data clustering algorithms are available in
the literature, all these existing algorithms are unable to judge whether a partition of categorical
clusters is statistically meaningful. As a consequence, we may even report a set of categorical
clusters from those datasets without a true clustering structure. Second, due to the discrete nature
of categorical data, the statistical assessment of categorical clusters can be more difficult than its
counterpart for numeric data. Finally, most categorical data clustering algorithms produce a set of
non-overlapping clusters as the output. Therefore, assessing the statistical significance of a partition
of non-overlapping categorical clusters would be more appealing than evaluating an individual
categorical cluster in practice.

To our knowledge, there is still a lack of theory and practice in bringing statistical rigor to
the evaluation of a partition of categorical clusters. In this article, we formulate the categorical
data clustering issue as a multiple hypothesis testing (MHT) problem. More precisely, given a
partition and its cluster label on a target dataset, we have the null hypothesis that each attribute is
independent of the cluster label, i.e., this is a random partition and there is no clustering structure.
For each attribute, we can derive a ?-value to determine whether we should retain or reject the
corresponding null hypothesis. Intuitively, if the given partition is not a meaningful clustering
result, it can be expected that we should retain most of the null hypotheses, i.e., most attributes are
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Fig. 1. The workflow of the proposed method.

independent of the target partition. Hence, we further borrow the idea from statistical meta-analysis
[14] to integrate these individual ?-values to obtain a combined ?-value.

To demonstrate the validity of above theoretical formulation, we further derive a computationally
feasible objective function as follows. We first employ the Chi-square test to obtain a ?-value for
determining whether the partition variable is independent of each attribute variable. Then, we use
the A th order ?-value method [81] to obtain a consensus ?-value by combining individual ?-values
from different attributes. Since the combined ?-value is hard to be optimized in practice, the sum of
Chi-square test statistics (SCS) is employed as the objective function. Finally, a new categorical
data clustering algorithm equipped with the new objective function is developed. Empirical studies
on real datasets demonstrate the effectiveness and computational efficiency of our method.

In summary, the workflow (as illustrated in Figure 1) and the main contributions of this work
can be summarized as follows:

—The categorical data clustering problem is formulated as a MHT issue. To the best of our
knowledge, this is the first attempt that tackles the cluster analysis problem from a MHT
aspect.

—A combined ?-value based on meta-analysis is derived, which is the first method to directly
calculate the statistical significance of a partition of categorical objects. The ?-value has the
potential to be a universal metric for evaluating categorical clustering results, regardless of
the specific clustering algorithm used.

—A new clustering algorithm by using iterative updating in an incremental manner is proposed.
Experimental results on real categorical datasets show that the presentedmethod is comparable
to state-of-the-art (SOTA) categorical data clustering methods in terms of both accuracy
(ACC) and running time.

The remaining parts of this article are organized as follows. Section 2 reviews the works that
are closely related to our method. Section 3 describes our method in detail. Experiments on real
datasets are given in Section 4. Finally, we conclude this article in Section 5.

2 Related Work
To assess the statistical significance of a set of non-overlapping clusters, existing significance-based
clustering methods are only available for numerical datasets rather than categorical datasets.
Thus, we discuss categorical data clustering algorithms and significance-based clustering methods
separately.
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2.1 Categorical Data Clustering
Existing methods for extracting clusters from categorical data can be roughly divided into the
following categories: partitioning method, hierarchical method [42, 87], density-based method
[16, 39], model-based method [22, 26], and ensemble method [53, 93]. Since partitioning algorithms
have been extensively investigated and our method falls into this category as well, we will elab-
orate partitioning algorithms for clustering categorical data in this section. In general, existing
partitioning algorithms can be divided into two types, depending on whether the objective function
requires pairwise distances or not.

2.1.1 Within-Cluster Sum of Squares (WSS)-Based Objective Function. The objective function is
defined based on the WSS, i.e., the sum of (squared) distance between each object and its cluster
center [51, 55]. Existing partitioning algorithms based on WSS can be further categorized into
two groups: (1) The objective function is defined on the original categorical data. (2) The objective
function is defined after categorical data embedding.

(1) The  -modes algorithm [51] and its extensions [23, 85] define the WSS objective function
based on the Hamming distance between two categorical objects and the mode is employed as
the cluster center. Therefore, subsequent research efforts toward this direction mainly focus
on deploying a more appropriate distance function [11, 15] or developing a more expressive
center representation. For instance, the distance measure is further enhanced by imposing
different weights on different attributes or different attribute values [2, 49, 56, 57, 70, 89, 91].
Meanwhile, the development of new center representations instead of modes for categorical
clusters is widely studied as well [8, 24].

(2) The embedding method typically converts categorical vectors into numerical ones, then
:-means or other clustering methods designed for numerical data can be utilized. That is,
the WSS objective function in the transformed data space is implicitly adopted when :-
means-type algorithms are used to obtain the clustering result. In the process of categorical
data embedding, those methods learn complex characteristics such as hierarchical couplings
[58, 59, 95], reconstructed features based on the co-occurrence probability of objects [73, 94]
and integrated vectors derived from a graph representation [7, 90].

2.1.2 Non-WSS-Based Objective Function. The objective function in this category does not rely
on an explicit distance measure and cluster representative. Two classic objective functions are
the Entropy-based function [10, 25, 62] and the Category Utility (CU) function [35, 65, 69], which
measure the compactness of each cluster based on the distribution of categorical values within
each cluster. However, these objective functions are not derived based on a rigorous significance
testing procedure, which cannot be directly employed for assessing the statistical significance of a
partition.

2.2 Significance-Based Clustering
To quantify the level of clusterability [1, 44] in terms of ?-value, significance-based clustering
methods incorporate statistical rigor and hypothesis testing procedure into cluster analysis [27, 40].
Significance-based clustering methods can be classified into two basic types, depending on the
target clustering structure [13]: partition or hierarchy. In significance-based hierarchical clustering
methods, some testing procedures are developed to guide the cutting [18, 61] or merging process
[40, 83] during the process for constructing the dendrogram, i.e., to produce a statistically significant
nested partition. The significance-based partitioning methods directly determine the statistical sig-
nificance of each single cluster or a set of : clusters. Since our method is also a partitioning method,
we will focus on related methods toward this direction. More precisely, existing significance-based
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partitioning algorithms can be further divided into two categories according to the null hypothesis
[12] and null model [41]:

(1) Unimodality Hypothesis. Null models in this category assume that the data samples are drawn
from a unimodal distribution [77]. If the given data exhibit a clustering structure, the alternative
hypothesis states that the data follows a bimodal distribution (e.g., Dip statistic [28]) or a multimodal
distribution (e.g., Silverman’s test [78]). In this case, the null hypothesis is rejected. To obtain a
statistically significant partition of : clusters, we can either sequentially test the unimodality of
single clusters (subsets of the data) or derive a ?-value on the :-partition. When testing single
clusters, i.e., whether the cluster has significant binary splits, some methods based on the extension
of Dip statistics are proposed [21, 60, 68], and the unimodal distribution is typically specified as a
single multivariate Gaussian distribution [48, 66]. As for testing the :-partition, the Silverman’s test
is usually employed [3], where : can be estimated by using an orthounimodal reference distribution
[43]. In addition, the Gaussian mixture distribution [29, 38, 74] is used to test the :-partition in
terms of separation on mean vectors.

(2) Uniformity Hypothesis. In contrast to the Unimodality hypothesis that data samples are
gathered around a mode in a single cluster, this hypothesis states that data samples are purely
randomly distributed in a given region. That is, all data samples have the same probability to
appear at each location within the region, which can be described by the so-called homogeneity
[33, 34]. Specifically, the randomness can be characterized through homogeneous Poisson process
[9, 50, 79, 86], minimum spanning tree (MST) [54, 72, 80], random graph [63, 64], and random
partition [37]. If a :-partition is statistically significant, then any homogeneous clusters are spatially
separated from each other, or the :-partition deviates from its reference : homogeneous groups [67].
When testing the :-partition, the determination of whether there is “no gap” between neighboring
homogeneous clusters is widely employed as the key procedure. More precisely, existing methods
utilize the ratio between two masses [34] and the two-sample test based on MST [36, 54] to test if
there is “no gap.”

All the above-mentioned null models and corresponding clustering methods are developed for
numerical data, which are not appropriate for categorical data since none of them are based on
discrete probabilistic models. To the best of our knowledge, only a few significance-based clustering
methods for categorical data have been proposed, including those by Zhang et al. [88] and, more
recently, by Hu et al. [46, 47]. The hypothesis testing procedure in [88] focuses on assessing the
statistical significance of an individual categorical cluster, with the DV algorithm sequentially
extracting statistically significant clusters, if they exist. The interpretable clustering method in
[47] aims to assess the statistical significance of each candidate split point during decision-tree
construction, with the SigDT algorithm forming categorical clusters that correspond to leaf nodes
in a top-down manner. However, neither of these methods can be directly applied to assess the
statistical significance of a given candidate :-partition. Notably, the clusterability test designed
for categorical data in [45] assesses the statistical significance of clustering tendency rather than
clustering result.

3 Methods
3.1 Problem Formulation
Suppose we have " attributes in a categorical dataset - = [-1, · · · , -" ]. For each attribute -< ,
we use G< to denote the corresponding categorical variable with &< distinct values {01, · · · , 0&< }.
In cluster analysis, # objects in - are divided into  non-overlapping clusters, and c is used to
denote the cluster label of an object. Obviously, c is a categorical variable with  distinct values
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{21, · · · , 2 }. For each object >8 (1 ≤ 8 ≤ # ), we have an observed pair (G8<, c8 ) for the<th attribute
(1 ≤< ≤ ") where G8< and c8 are sampled from categorical variables G< and c , respectively.

In this article, we solve the categorical data clustering problem from a significance testing
perspective. Under the null hypothesis that the clustering structure is not present, i.e., no clusters
exist in the categorical dataset - , we know that the partition variable c is independent of each
attribute variable G< . More precisely, we use \< = 0 and \< ≠ 0 to denote whether c is independent
of the<th attribute G< , respectively. Then, the problem of assessing whether a given set of clusters
exist can be formulated as MHT issue:

�0 :
⋂

1≤<≤"
{\< = 0} versus �0 :

"∑
<=1

� {\< ≠ 0} ≥ A, (1)

where the null hypothesis states that the partition is statistically independent of each attribute
and the alternative hypothesis requires that c should have a statistical correlation with at least A
attributes.

In fact, the same and other related significance testing issues in the form of Equation (1) have
been widely investigated in the field of statistical meta-analysis [14, 20, 71, 84]. The basic idea works
as follows: we first obtain a ?-value for each individual statistical test and then combine these
" ?-values via meta-analysis. After employing a well-calibrated ?-value combination procedure,
we obtain a final single ?-value to determine the acceptance or rejection of the null hypothesis.
In our context, we can use the combined ?-value as an objective function to guide the search of
meaningful categorical clusters. That is, the categorical data clustering problem is to find a partition
c such that the combined ?-value is minimized.

3.2 MHT-Based Objective Function
To derive an objective function via MHT, we first use the Chi-square test to determine whether a
partition variable is independent of each attribute variable in terms of ?-values. Then, we obtain a
single ?-value using a meta-analysis approach that combines" ?-values. Since directly optimizing
the combined ?-value is challenging, and extremely small ?-values may exceed the limits of
computational precision, the SCS is employed as the MHT-based objective function and is iteratively
optimized in practice.

3.2.1 Chi-Square Test. The Chi-square test is a natural choice for quantifying the independence
relationship between two categorical variables. In our setting, these two random variables corre-
spond to the partition variable c and the attribute variable G< . The test statistic j2 is obtained by
comparing observed frequencies with expected frequencies under the null hypothesis that c and
G< are independent.

For an observed pair (G<, c), we have # samples >8 (G8<, c8 ) with 8 = 1, 2, · · · , # in - . We use
N(<)
@:

to denote the observed frequency when the @th (1 ≤ @ ≤ &<) attribute value of G< falls into
the :th (1 ≤ : ≤  ) cluster. That is, we count the number of observed >8 with (G8< = 0@, c

8 = 2: ) in a
cell (@, :) of&< ×  contingency table shown in Table 1. Then, we can calculate the corresponding
expected frequency for each cell as follows:

E(<)
@:

=

(
&<∑
@=1

N(<)
@:

·
 ∑
:=1

N(<)
@:

)
/# = (N·: · N(<)

@ · )/#, (2)
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Table 1. The Contingency Table for the Chi-Square
Test on the Independence between G< and c

21 22 · · · 2 Total

01 N(<)
11 N(<)

12 N(<)
1: N(<)

1 N(<)
1·

02 N(<)
21 N(<)

22 N(<)
2: N(<)

2 N(<)
2·

.

.

. N(<)
@1 N(<)

@2 N(<)
@:

N(<)
@ 

N(<)
@ ·

0&< N(<)
&<1

N(<)
&<2

N(<)
&<:

N(<)
&< 

N(<)
&< ·

Total N·1 N·2 N·: N· 

where N·: and N(<)
@ · are total frequency counts in 2: and 0@ , respectively. The Chi-square test

statistic has the following form:

j2< (-<, c) =
 ∑
:=1

&<∑
@=1

(
N(<)
@:

− E(<)
@:

)2
E(<)
@:

. (3)

As # increases, the probability distribution of j2 follows the Chi-square distribution asymp-
totically with (&< − 1) · ( − 1) degrees of freedom. Given - and a partition c , we can derive"
?-values by using the Chi-square test for all" attributes. Each ?-value can be used to determine
whether there is a correlation between the partition and the corresponding attribute.

We illustrate how to calculate the ?-value by taking the Loan Data in Table 2 as an example. The
Loan Data is a categorical dataset - = [Sex,Age,Credit] with # = 7, " = 3. Suppose we divided
the data into non-overlapped clusters with  = 2 and the Status is a partition variable c with
21 = Approved and 22 = Unapproved, the contingency table for the correlation test between c and
attribute variable Age {01 = Young, 02 =Middle, 03 = Older} is shown in Table 3. According to the
derived ?-value, if the significance level is specified to be 0.05, then we can determine that there is
a correlation between the attribute variable Age (G2) and the specified partition variable Status (c).
For other attributes, we have j2 = 0.1944, ?-value = 0.6592 and j2 = 7, ?-value = 0.0302
for (Sex, Status) and (Credit, Status), respectively. We can see that the partition c in Table 3 is
statistically associated with two attributes when the significance level is 0.05. Hence, it is likely to
be a partition that is composed of ground-truth (GT) clusters.

In contrast, for the partition c ′ with two clusters: {>2, >4, >5} and {>1, >3, >6, >7}, we have j2 =
1.2153, ?-value = 0.2703 for (Sex, Status), j2 = 4.2778, ?-value = 0.1178 for (Age, Status) and j2 =
0.8750, ?-value = 0.6456 for (Credit, Status). Obviously, this partition is statistically independent
of each attribute under the significance level of 0.05 and we may claim that it is not a meaningful
clustering result.

3.2.2 Meta-Analysis. To combine multiple ?-values, we apply the A th ordered ?-value (rOP)
method [81] to solve our issue. We derive a single ?-value by using rOP as follows: we first take the
A th smallest ?-value among" sorted ?-values as the test statistic. According to [81], such a test
statistic follows a Beta distribution in which two parameters are specified as: U = A, V =" − A + 1.
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Table 2. An Example Dataset: The Loan Data Consists of Seven
Objects, Three Attributes, and Two Clusters

Loan ID (>8 ) Sex (G1) Age (G2) Credit (G3) Status (c)

Applicant 1 Female Young Good Approved

Applicant 2 Male Young Fair Approved

Applicant 3 Female Young Fair Approved

Applicant 4 Male Middle Poor Unapproved

Applicant 5 Female Middle Poor Unapproved

Applicant 6 Male Older Poor Unapproved

Applicant 7 Female Older Poor Unapproved

Table 3. The Contingency Table for the Chi-Square Test on
the Independence between Age (G2) and Status (c) of the

Loan Data

Observed Frequencies

Approved (21) Unapproved (22) Total

Young (01) 3 0 3

Middle (02) 0 2 2

Older (03) 0 2 2

Total 3 4

Expected Frequencies

Approved (21) Unapproved (22) Total

Young (01) 9/7 12/7 3

Middle (02) 6/7 8/7 2

Older (03) 6/7 8/7 2

Total 3 4

We obtain j2 = (3 − 9
7 )

2/( 97 ) + · · · + (2 − 8
7 )

2/( 87 ) = 7, and
?-value = 0.0302 with (3 − 1) · (2 − 1) = 2 df.

Accordingly, we can derive the final ?-value for assessing the statistical significance of the target
partition.

In the Loan Data, if we set A = 2 and then the second smallest ?-value in the sorted list
[0.0302, 0.0302, 0.6592] for c in Table 2 will be the test statistic. The parameters for the corre-
sponding Beta distribution are U = 2, V = 3 − 2 + 1 = 2. Consequently, we can derive the final
?-value as 0.0027. Similarly, for the partition c ′, the combined ?-value will be 0.1797. That is, if we
employ the combined ?-value as the objective function, then c is better than c ′ and the former has
a statistically significant clustering structure according to the hypothesis testing result.

However, it is not a good choice to directly optimize the combined ?-value due to the following
reasons: (1) Since we do not have a priori knowledge about how many attributes are statistically
associated with a target partition, it is a dilemma for choosing the parameter A to combine ?-values
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with rOP. (2) Since the A th smallest ?-value is an ordered statistic, this test statistic may be associated
with different attributes for different partitions. As a result, it will be a non-trivial task to develop an
efficient algorithm for searching a desirable partition when such a test statistic or its corresponding
?-value is deployed as the objective function. To overcome the above limitations, we employ the
SCS as the objective function.

3.2.3 The Sum of Test Statistics. Given any partition c with  clusters on a categorical dataset
- , we denote the Chi-square test statistic for the <th attribute as j2< (-<, c). The MHT-based
objective function named the SCS can be written as:

SCS(-, c) =
"∑
<=1

j2< (-<, c) =
"∑
<=1

 ∑
:=1

&<∑
@=1

(
N(<)
@:

− E(<)
@:

)2
E(<)
@:

. (4)

To detect clusters from a given categorical dataset - , we can try to maximize the objective function
in Equation (4). This is because: (1) A maximal test statistic corresponds to the minimal ?-value
for the Chi-square test for each attribute. (2) A GT partition is expected to be statistically cor-
related with most attributes. If the sum of all individual test statistics is maximized, then the
objective of minimizing the A th smallest ?-value in rOP can be partially achieved in an indirect
manner.

To further show the rationale of the objective function and reveal its nature, we will provide a

simplified version of Equation (4). According to Equation (2) and
 ∑
:=1

&<∑
@=1

N(<)
@:

=
 ∑
:=1

N·: =
&<∑
@=1

N(<)
@ · =

 ∑
:=1

&<∑
@=1

E(<)
@:

= # , we simplify SCS(-, c) in Equation (4) as follows:

"∑
<=1

 ∑
:=1

&<∑
@=1

©­­«
(
N(<)
@:

)2
E(<)
@:

− 2 · N(<)
@:

+ E(<)
@:

ª®®¬
=

"∑
<=1

 ∑
:=1

&<∑
@=1

(
N(<)
@:

)2
(N·: · N (<)

@ · )/#
+

"∑
<=1

 ∑
:=1

&<∑
@=1

(
−2 · N(<)

@:
+ E(<)

@:

)
= # ·

"∑
<=1

 ∑
:=1

&<∑
@=1

(
N(<)
@:

)2
N·: · N(<)

@ ·
− # ·"

= # ·
 ∑
:=1

©­­«
1

N·:
·
"∑
<=1

&<∑
@=1

(
N(<)
@:

)2
N(<)
@ ·

ª®®¬ − # ·"

= # ·
 ∑
:=1

): − # ·",

(5)

where ): = 1
N·:

·
"∑
<=1

&<∑
@=1

(
N(<)
@:

)2
N(<)
@ ·

, 1 ≤ : ≤  .

The larger the SCS value, the more likely it is to obtain a set of compact categorical clusters. In
the :th cluster of the target partition on - , we have a fixed cluster size N·: and an attribute value
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distribution with N(<)
@ · on each attribute. If there are more identical attribute values in each single

cluster, ): tends to be larger, i.e., each term of SCS function will be larger.
To formally establish the connection between our SCS objective function and the widely accepted

criterion of within-cluster (intra-cluster) compactness, we first rewrite
∑&<
@=1 (N

(<)
@:

)2/N(<)
@ · in ):

and define it as a compactness measure at the attribute level. This measure exclusively considers
the variables affected by different cluster assignments and incorporates self-tuning weights related
to frequency. We refer to this measure as frequency-scaled compactness (FsC), which is defined
as the dot product of the frequency vector s and the corresponding object number distribution
vector C:

�B� = s · C =

&<∑
@=1

B@�@ = [B1, B2, . . . , B&< ] · [�1,�2, . . . ,�&< ]

=


N(<)
1:

N(<)
1·

,
N(<)
2:

N(<)
2·

, . . . ,
N(<)
&<:

N(<)
&< ·

 · [N(<)
1: ,N(<)

2: , . . . ,N(<)
&<:

] .

(6)

Since the Hessian matrix ∇2FsC is positive semidefinite, FsC is a convex function (see [17]).
Given that the constraints

∑&<
@=1�@ = N·: and �@ ≥ 0 together define a standard &<-dimensional

simplex, the maximum of FsC is attained at a vertex of the simplex, where exactly one �@ equals
N·: and all others are zero. If there is only one category that exists, e.g., taking the @th category,
we have

FsC =

0, 0, . . . ,
N(<)
@:

N(<)
@ ·

, . . . , 0

 · [0, 0, . . . ,N(<)
@:

, . . . , 0] = B@�@ . (7)

In this cluster assignment, the convex function FsC reaches its maximum compactness. Conse-
quently, ): attains its maximum value. If each cluster contains exactly one unique category per
attribute, the total summed ): (SCS) also reaches its maximum. The same holds for the K-modes
objective function (KMF), where the @th category serves as the mode (i.e., the category with the
highest frequency).

Next, for an arbitrary cluster assignment, we denote the mode as the @∗th category without loss
of generality. The KMF-based compactness, which is inversely proportional to KMF-based distances
(hereafter, KMF represents compactness), can be expressed as the number of objects in the attribute
that match the mode, i.e., KMF =�@∗ . Thus, FsC can be rewritten as:

FsC = [B1, B2, . . . , B@∗ , . . . , B&< ] · [�1,�2, . . . ,�@∗ , . . . ,�&< ]

= B@∗�@∗ +
&<∑
@≠@∗

B@�@ = B@∗KMF +
&<∑
@≠@∗

B@�@ .
(8)

By utilizing Equation (8), SCS can be explained as quantifying the compactness of attribute
values gathering around the high-frequency categories (the mode and subdominant categories with
relatively high frequencies) by using s to penalize the contribution of lower-frequency categories to
the SCS values. Interestingly, when the mode has a large frequency and the term B@∗KMF dominates
in Equation (8), the influence of the second term diminishes, making SCS closely approximate the
KMF. Unlike the KMF, which considers only mode-related compactness or distances, SCS accounts
for all attribute values. By applying well-scaled frequency weights, SCS also mitigates the impact
of noise from categories with extremely low frequencies.
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In order to establish the relationship with other validity functions [6] such as the CU [35], we
rewrite SCS(-, c) in Equation (5) as follows:

# ·
"∑
<=1

 ∑
:=1

&<∑
@=1

(
N(<)
@:

)2
N·: · N(<)

@ ·
− # ·"

= # ·
"∑
<=1

 ∑
:=1

&<∑
@=1

©­«
N(<)
@:

N·:
·
N(<)
@:

N(<)
@ ·

ª®¬ − # ·"

= # ·
"∑
<=1

 ∑
:=1

&<∑
@=1

©­«? (0 (<)
@ |2: ) ·

N(<)
@:

N(<)
@ ·

ª®¬ − # ·"

= # ·
"∑
<=1

 ∑
:=1

&<∑
@=1

F<@ ·
(
N·: · ?2 (0 (<)

@ |2: )
)
− # ·",

(9)

where ? (0 (<)
@ |2: ) =

N(<)
@:

N·:
denotes the category-conditional probability that the<th attribute takes

on the @th categorical value when it belongs to the :th cluster, and F<@ = 1
N(<)
@ ·

is the weight

function depending on the categorical value distribution for each attribute.
According to the reference [6], CU can be written as:

CU(-, c) = 1
#

 ∑
:=1

N·:

"∑
<=1

&<∑
@=1

?2 (0 (<)
@ |2: ) − % =

1
#

·
"∑
<=1

 ∑
:=1

&<∑
@=1

(
N·: · ?2 (0 (<)

@ |2: )
)
− %, (10)

where % = 1
#
·
"∑
<=1

 ∑
:=1

&<∑
@=1

?2 (0 (<)
@ ) and ? (0 (<)

@ ) = N(<)
@ ·
#

.

Given the dataset- , # ," , and % are constants. Therefore, to obtain the optimal partition c∗ for a
given- , maximizing CU is equivalent to maximizing the first term of Equation (10) and maximizing
our SCS is equivalent to maximizing the first term of Equation (9). More precisely, CU is a special
case of SCS when allF<@ (1 ≤ @ ≤ &<) are equal for any<th attribute. As a generalized CU, for
each cluster, our SCS objective function imposes a larger weight on higher-frequency attribute

value by usingF<@ =
N(<)
@:

N(<)
@ ·

, which can facilitate the generation of more homogeneous clusters.

To calculate the objective function according to Equation (5), we need to know the number
of objects, the number of attributes and the number of the @th attribute value in the :th cluster
for each attribute. Obviously, these values are easy to obtain and the objective function can be
calculated quickly in an incremental manner.

3.3 The Clustering Algorithm
3.3.1 An Overview. We develop a new clustering algorithm in which SCS is utilized as the

objective function. As shown in Algorithm 1, the new clustering algorithm is named  -MHTC
(Clustering Categorical Data via MHT with  clusters), whose input is a categorical dataset and a
user-specified number of clusters  . The algorithm returns a locally optimal partition with respect
to the SCS objective function.

Initially, we generate a random partition that assigns each object to 1 of  clusters independently
and uniformly. Then, we try to update the initial partition in an iterative manner (Lines 3∼15). In
each iteration (Lines 5∼14), we visit every object sequentially to check if its re-assignment to other
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Algorithm 1:  -MHTC

 − 1 clusters can improve the objective function. If the movement of the target object to a different
cluster can increase the SCS value, then target object will be assigned to the cluster that will lead to
the largest SCS value. This procedure will be terminated until there are no updates in one iteration,
which means that moving any object to another cluster will not increase the SCS value.

3.3.2 Updating the SCS Value Incrementally. In Algorithm 1, the most time-consuming operation
is to calculate the SCS value for each new partition after re-assigning the cluster membership of
the 8th object. Given the old SCS value of ĉ , we can quickly calculate the new SCS value of c as
follows.

Suppose that >8 is moved from cluster 2� to 2� , then the difference Δ(>8 , �, �) between the two
SCS values is only associated with two terms in [)1, · · · ,) ], i.e.,)� and)� . More precisely, we only
need to update those terms in )� and )� that are involved with the attribute values appeared in >8
(i.e., G8< for 1 ≤< ≤ "). Suppose G8< is the A (<) th attribute value for the<th attribute. According
to Equation (5), )̂�, )̂� in SCS(-, ĉ) and )�, )� in SCS(-, c) can be expressed as follows:

)̂� =
1

N·�
·
"∑
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©­­«
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ª®®¬ ,
)̂� =

1
N·�

·
"∑
<=1

©­­«
∑

@≠A (<)

(
N(<)
@�

)2
N(<)
@ ·

+
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− 1
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Then, we can obtain the following two equations:

X (�) =)� − N·�
N·� − 1
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·
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·
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2 · N(<)
A (<)�
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(11)

Thus, to obtain the new SCS value, we only need to update)� and)� based on )̂� and )̂� as follows:

)� =
N·�

N·� − 1
)̂� + X (�),

)� =
N·�

N·� + 1
)̂� + X (�).

(12)

3.3.3 Complexity and Convergence Analysis. As shown in Equation (11), the calculation of X (�)
and X (�) in Equation (12) requires the values of N(<)

A (<)�
and N(<)

A (<)�
. We can retrieve and update

the count of G8< in each cluster in O(1) when a hash table is utilized to store attribute values and
their counts. Thus, we can update each term in SCS in O("). In Lines 6∼9, we only need to update
the )� once and calculate the )� value  − 1 times in O( "). Therefore, the time complexity for
re-assigning an object is O( ").

In the initialization step of Algorithm 1, we randomly generate # cluster labels in O(# ) and scan
the dataset once in O(#") to obtain each N(<)

@:
for calculating the )̂ . In the iteration step (Lines

3∼15), we scan the given dataset I times and execute the re-assignment procedure (Lines 6∼13) #
times in each iteration. Hence, the iteration step of Algorithm 1 has a time complexity O(I# ").
The overall time complexity of Algorithm 1 is O(# ) + O(#") + O(I# ") = O(I# "). The
scalability evaluation of the algorithm on large-scale simulated data is presented in Section 4.2

The  -MHTC algorithm converges after I iterations and we prove that I is a finite number as
follows: First, the re-assignment procedure can only generate a finite number of possible partitions.
Second, each possible partition cannot appear more than once in the iteration (Line 11) since the
objective function in the algorithm is monotonically increasing. Therefore, the  -MHTC algorithm
converges in a finite number of iterations. We will show in Section 4.2 that the number of iterations
remains small across various datasets.
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Table 4. The Properties of 25 Datasets

Dataset Abbr. # " &  

Lenses Ls 24 4 9 3
Lung Cancer Lc 32 56 159 3
Soybean (Small) So 47 21 58 4
Photo Evaluation Pe 66 4 21 3
Assistant Evaluation Ae 72 4 21 3
Zoo Zo 101 16 36 7
Promoter Sequences Ps 106 57 228 2
Hayes-Roth Hr 132 4 15 3
Lymphography Ly 148 18 59 4
Heart Disease Hd 303 13 57 5
Solar Flare Sf 323 9 25 6
Primary Tumor Pt 339 17 42 21
Dermatology De 366 33 129 6
House Votes Hv 435 16 48 2
Balance Scale Bs 625 4 20 3
Credit Approval Ca 690 9 45 2
Breast Cancer Bc 699 9 90 2
Mammographic Mass Mm 824 4 18 2
Tic-Tac-Toe Tt 958 9 27 2
Lecturer Evaluation Le 1,000 4 20 5
Car Evaluation Ce 1,728 6 21 4
Titanic Ti 2,201 3 6 4
Chess (kr vs. kp) Ch 3,196 36 73 2
Mushroom Mu 8,124 20 111 2
Nursery Nu 12,960 8 27 5

4 Experiments
First, we compare  -MHTC1 with 11 categorical data clustering methods on 25 real-world datasets
in terms of three evaluation metrics. Then, we show that the combined ?-value via MHT is effective
on assessing whether a partition is statistically significant or not. All experiments are conducted
on an Intel i7-12700K@3.60 GHz personal computer with 32G RAM.

The properties of 25 real-world datasets are shown in Table 4 where the notations used are
consistent with the previous section and & denotes the total number of all categorical values in a
dataset. Among theses datasets, Photo Evaluation, Assistant Evaluation, and Lecturer Evaluation
are collected from [89], others (except for Titanic2) are downloaded from the UCI Machine Learning
Repository [32].

The baseline methods can be divided into three types as listed below:

—Classic partitioning methods based on objective functions [6] defined on the original cate-
gorical data: CU [35],  -modes [51], and Entropy [62]. We use the same procedure in our
algorithm to maximize the CU objective function and a Monte Carlo procedure to minimize
the Entropy objective function.

—SOTA partitioning methods: CDC_DR [7], CMS [58], CDE [59], Het2Hom [91], HD-NDW
[89], and COForest [92]. In CDC_DR, spectral embedding and joint operation are used since

1https://github.com/hulianyu/MHTC.
2https://perso.liris.cnrs.fr/marc.plantevit/ENS/TP/dataTP2/.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 5, Article 109. Publication date: June 2025.

https://github.com/hulianyu/MHTC
https://github.com/hulianyu/MHTC
https://perso.liris.cnrs.fr/marc.plantevit/ENS/TP/dataTP2/
https://perso.liris.cnrs.fr/marc.plantevit/ENS/TP/dataTP2/


Clustering Categorical Data via Multiple Hypothesis Testing 109:15

this combination can achieve better performance than other candidates [7]. As suggested in
the original paper, the parameter adjusting intra- and inter-attribute couplings in CMS is set
to 0.5 for each dataset, and spectral clustering [75] is employed. Since there are no ordinal
attributes in the datasets used in the experiment, we set the number of ordinal attributes to be
0 on each dataset in Het2Hom and HD-NDW. According to [89], HD-NDW is competitive to
other SOTA algorithms such as UNTIE [95], WOC [56], and SBC [73] under this parameter
setting. Therefore, those methods can achieve the same level performance as HD-NDW are
not included in the performance comparison.

—Significance-based methods: DV [88] and SigDT [47]. These algorithms automatically de-
termine the number of clusters. The former extracts clusters one by one, while the latter
constructs an unsupervised decision tree. In some cases, DV may not output a result if it fails
to identify any statistically significant clusters. For SigDT, even when the initial split of a
given dataset is not statistically significant, it still enforces a cut into two clusters based on
its splitting criterion. These significance-based methods can assist in determining whether
a dataset is clusterable, which can be verified by DV if it detects at least one statistically
significant individual cluster or by SigDT if the initial split of the data is statistically significant.

The source codes of above baseline methods are publicly available, and the codes of representation
methods are provided by the original authors. In the performance comparison, we independently
run each algorithm 50 times on each dataset and report the average results. We set the num-
ber of cluster  used in each algorithm (except for DV) to be the GT cluster number on each
dataset.

To verify the clustering results, we employ three widely used external evaluation metrics:
Clustering ACC [19], normalized mutual information (NMI) [82], and adjusted Rand index
(ARI) [52]. These external metrics calculate the similarity between a clustering result c and the GT
partition c∗ on a dataset. The higher these metrics are, the better the performance of a clustering
algorithm. All these metrics provide complementary insights into clustering performance from
different perspectives, based on each object’s cluster label c8 and GT label c8∗. Specifically, they
assess label matching (ACC), mutual information (NMI), and pair-counting (ARI). The detailed
calculations are as follows:

ACC =

∑#
8=1 5 (c8 → c8∗)

#
, (13)

where 5 is a mapping function that aligns c8 with its corresponding GT label c8∗, assigning 5 (c8 →
c8∗) = 1 if they match and 0 otherwise. The optimal mapping is obtained using the Kuhn-Munkres
algorithm [19].

NMI =
1
2
· H(c) + H(c∗) − H(c, c∗)

H(c) + H(c∗)
, (14)

where both label sets are treated as random variables. Here,H(c) andH(c∗) denote their respective
entropies, while H(c, c∗) represents their joint entropy.

ARI =
RI − E[RI]

max(RI) − E[RI] , (15)

where the Rand index (RI) quantifies the proportion of correctly assigned object pairs. Here,
E[RI] is the expected RI, and max(RI) is its maximum value, both computed using a permutation
model. The ARI ranges from −1 to 1, which can be regarded as a normalized RI. The RI is defined as
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follows:

RI =
TP + TN

TP + FP + FN + TN
. (16)

In Equation (16), TP (true positive) denotes the number of object pairs that share the same c∗ and
are correctly clustered in c . FP (false positive) refers to pairs with different c∗ that are incorrectly
clustered together in c . FN (false negative) represents pairs with the same c∗ that are incorrectly
assigned to different clusters in c . TN (true negative) counts pairs with different c∗ that are correctly
assigned to separate clusters in c .

4.1 Performance Comparison
The performance comparison results in terms of three external metrics are listed in Table 5, where
the mean and average rank assess the overall performance of each method. The faced values
indicate the best results, and the corresponding average values are highlighted. The running time of
each method on each dataset is displayed in Table 6. The total running time of DV in 50 executions
is about 300 hours, which is much more time consuming than other methods. From Tables 5 and 6,
we have the following key observations.

—Overall Performance:  -MHTC achieves the best overall performance in terms of all three
metrics and ranks fourth in overall running time, with a notable second-fastest ranking on Ps
(which contains the largest number of categorical values among all datasets).This demonstrates
that the MHT-based objective function and our optimization procedure effectively identify
meaningful categorical clusters. Compared to the best-performing competitor among the
eleven methods, our algorithm achieves an overall improvement of more than 3.5% in NMI
and 4.5% in ARI. Meanwhile,  -MHTC is highly reliable, as it never produces partitions that
are worse than random ones. In contrast, as shown in Table 5, competing algorithms (except
Entropy, CDE, HD-NDW, and COForest) commonly generate partitions that are worse than
arbitrary partitions on certain datasets, such as Hr.

—Comparison with DV and SigDT: Since  -MHTC is a clustering method based on significance
testing, we include DV and SigDT in the performance comparison despite the fact that they
do not belong to :-partition methods. Regarding DV, our method runs significantly faster
across all datasets, whereas DV often fails to report clustering results on datasets that may
contain meaningful clusters, at least those clusterable datasets recognized by SigDT. As shown
in Figure 2(a), on DV-verified datasets (where DV can report a result),  -MHTC significantly
outperforms DV across all three metrics. As indicated in Table 6, SigDT ranks as the fastest
competing method, suggesting that significance testing can potentially be applied efficiently
in clustering algorithms. However, its clustering quality is considerably worse than that of
 -MHTC, with ARI being particularly inferior, as shown in Figure 2(a). Even on SigDT-verified
datasets (where SigDT can produce at least a statistically significant initial split), it still fails
to outperform  -MHTC, as evidenced in Figure 2(b).

—Comparison with Classic Partitioning Algorithms: In terms of three metrics,  -MHTC can
achieve better performance than the best-performing methods based on validity functions on
13 datasets (except for Ls, Lc, Pe, Pt, Ca, Mm, Tt, Ce, Ti, Ch, Mu, Nu), while one method among
CU, Entropy and -modes can achieve better results than -MHTC on nine datasets. When the
same 50 initial random partitions are utilized in both  -MHTC and CU, CU usually requires
more iterations (as evidenced in Section 4.2). This could partially explain why CU method
takes more running time than  -MHTC on most datasets, even the CU function is a special
case of our SCS function. The performance contrast is more pronounced on datasets with
verified clustering tendency. As shown in Figure 2(a),  -MHTC is statistically significantly

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 5, Article 109. Publication date: June 2025.



Clustering Categorical Data via Multiple Hypothesis Testing 109:17
Ta
bl
e
5.

Th
e
Pe

rf
or
m
an

ce
of
 
-M

H
TC

,C
U
, 

-M
od

es
,E

nt
ro
py
,D

V,
Si
gD

T,
C
D
C
_D

R
,C

M
S,
C
D
E,

H
et
2H

om
,H

D
-N

D
W
,a
nd

C
O
Fo

re
st
Is
C
om

pa
re
d

in
Te
rm

s
of

A
C
C
,N

M
I,
an

d
A
R
Ia

cr
os
s
25

D
at
as
et
s

M
et
ric

M
et
ho

d
Ls

Lc
So

Pe
A
e

Zo
Ps

H
r

Ly
H
d

Sf
Pt

D
e

H
v

Bs
Ca

Bc
M
m

Tt
Le

Ce
Ti

Ch
M
u

N
u

M
ea

n
Ra

nk

A
CC

Ra
nd

om
0.
47

5
0.
44

3
0.
36

0
0.
42

1
0.
40

7
0.
26

0
0.
54

0
0.
39

1
0.
31

1
0.
25

1
0.
22

3
0.
14

8
0.
22

0
0.
51

9
0.
35

8
0.
51

6
0.
51

7
0.
51

5
0.
51

3
0.
22

9
0.
26

6
0.
26

9
0.
50

7
0.
51

4
0.
21

2
0.
37

5
11

.6
4

 
-M

H
TC

0.
50

7
0.
53

1
0.
98

4
0.
54

4
0.
54

9
0.
80

9
0.
75

3
0.
43

0
0.
59

2
0.
43

7
0.
52

4
0.
28

6
0.
74

5
0.
88

0
0.
45

9
0.
62

0
0.
97

4
0.
79

0
0.
55

6
0.
32

2
0.
31

4
0.
42

0
0.
52

4
0.
81

4
0.
34

4
0.
58

8
4.
88

CU
0.
56

4
0.
51

3
0.
89

2
0.
53

1
0.
53

2
0.
59

9
0.
70

9
0.
35

3
0.
46

8
0.
35

2
0.
46

3
0.
27

7
0.
74

0
0.
86

9
0.
41

7
0.
77

2
0.
91

4
0.
82

7
0.
56

0
0.
29

7
0.
35

1
0.
33

0
0.
54

4
0.
81

5
0.
31

1
0.
56

0
6.
96

 
-m

od
es

0.
54

3
0.
51

7
0.
82

6
0.
56

4
0.
50

9
0.
69

1
0.
55

7
0.
37

0
0.
44

1
0.
39

3
0.
47

3
0.
29

5
0.
61

7
0.
86

6
0.
42

4
0.
74

9
0.
90

4
0.
81

8
0.
54

8
0.
31

9
0.
38

0
0.
43

3
0.
54

4
0.
73

3
0.
35

3
0.
55

5
6.
80

En
tr
op

y
0.
54

3
0.
59

6
0.
87

1
0.
52

8
0.
53

6
0.
70

5
0.
72

3
0.
42

2
0.
52

2
0.
38

0
0.
44

4
0.
29

5
0.
62

2
0.
86

9
0.
44

2
0.
65

9
0.
96

2
0.
74

9
0.
56

7
0.
31

3
0.
38

3
0.
39

9
0.
52

1
0.
75

7
0.
33

1
0.
56

6
6.
30

D
V

—
—

1
—

—
0.
95

0
—

—
0.
34

5
0.
16

8
—

—
0.
49

7
0.
75

6
—

—
0.
73

8
—

—
—

—
—

—
0.
24

5
—

—
—

Si
gD

T
0.
54

2
0.
56

3
1

0.
47

0
0.
47

2
0.
72

3
0.
66

0
0.
48

5
0.
58

8
0.
47

9
0.
49

5
0.
30

1
0.
83

3
0.
58

2
0.
59

0
0.
68

3
0.
76

3
0.
82

4
0.
40

1
0.
40

1
0.
53

4
0.
43

8
0.
16

4
0.
53

0
0.
40

2
0.
55

7
5.
14

CD
C_

D
R

0.
41

7
0.
53

4
0.
85

9
0.
52

5
0.
53

5
0.
75

7
0.
76

3
0.
37

4
0.
60

4
0.
41

6
0.
49

0
0.
30

2
0.
68

9
0.
84

6
0.
51

7
0.
68

1
0.
97

3
0.
81

7
0.
55

7
0.
30

9
0.
33

5
0.
42

8
0.
53

3
0.
53

3
0.
30

4
0.
56

4
6.
04

CM
S

0.
57

4
0.
57

6
1

0.
44

8
0.
48

4
0.
64

1
0.
76

5
0.
34

1
0.
50

3
0.
32

4
0.
43

7
0.
26

2
0.
80

8
0.
87

8
0.
38

1
0.
67

8
0.
96

4
0.
82

6
0.
51

7
0.
30

5
0.
39

9
0.
41

6
0.
50

9
0.
91

0
0.
31

0
0.
57

0
6.
78

CD
E

0.
50

8
0.
52

6
0.
89

3
0.
50

0
0.
50

6
0.
74

6
0.
69

9
0.
47

7
0.
51

7
0.
40

0
0.
48

9
0.
30

5
0.
68

5
0.
86

3
0.
47

5
0.
65

0
0.
96

7
0.
79

2
0.
57

3
0.
31

6
0.
36

4
0.
42

6
0.
52

7
0.
87

3
0.
32

0
0.
57

6
6.
08

H
et
2H

om
0.
53

5
0.
53

8
0.
98

8
0.
52

4
0.
52

2
0.
71

9
0.
51

1
0.
33

3
0.
48

9
0.
35

0
0.
44

2
0.
28

5
0.
75

4
0.
87

4
0.
46

8
0.
83

6
0.
96

7
0.
81

2
0.
55

5
0.
33

3
0.
37

6
0.
42

8
0.
52

1
0.
88

3
0.
31

1
0.
57

4
6.
24

H
D
-N

D
W

0.
55

2
0.
53

5
0.
82

7
0.
54

1
0.
55

5
0.
74

1
0.
67

8
0.
40

8
0.
66

8
0.
45

3
0.
52

1
0.
30

0
0.
71

5
0.
86

7
0.
43

1
0.
54

2
0.
96

9
0.
79

4
0.
57

3
0.
31

9
0.
36

9
0.
43

5
0.
51

2
0.
81

1
0.
32

6
0.
57

8
5.
16

CO
Fo

re
st

0.
54

3
0.
53

9
0.
89

4
0.
51

6
0.
52

4
0.
70

0
0.
63

8
0.
41

5
0.
50

6
0.
36

2
0.
41

0
0.
27

2
0.
73

5
0.
87

7
0.
44

8
0.
71

2
0.
92

0
0.
80

6
0.
56

6
0.
32

3
0.
38

4
0.
42

8
0.
55

8
0.
78

3
0.
31

9
0.
56

7
5.
98

N
M
I

Ra
nd

om
0.
13

0
0.
06

9
0.
07

4
0.
03

5
0.
02

6
0.
10

9
0.
00

8
0.
01

5
0.
02

4
0.
01

6
0.
02

4
0.
17

0
0.
01

9
0.
00

2
0.
00

3
0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00

5
0.
00

2
0.
00

2
0.
00

0
0.
00

0
0.
00

0
0.
02

9
11

.6
4

 
-M

H
TC

0.
17

9
0.
27

4
0.
98

6
0.
20

2
0.
20

1
0.
81

3
0.
26

4
0.
05

9
0.
25

6
0.
18

9
0.
38

9
0.
32

5
0.
82

6
0.
48

3
0.
04

6
0.
08

4
0.
82

0
0.
29

4
0.
00

8
0.
06

7
0.
05

1
0.
10

9
0.
00

3
0.
38

0
0.
05

1
0.
29

4
4.
32

CU
0.
27

9
0.
16

3
0.
83

8
0.
16

5
0.
15

8
0.
67

3
0.
20

5
0.
00

3
0.
17

1
0.
17

3
0.
29

7
0.
34

4
0.
74

8
0.
48

2
0.
02

6
0.
27

6
0.
62

5
0.
33

9
0.
01

9
0.
04

9
0.
08

8
0.
06

8
0.
00

8
0.
28

3
0.
09

0
0.
26

3
6.
44

 
-m

od
es

0.
24

1
0.
20

1
0.
82

2
0.
19

1
0.
13

0
0.
73

6
0.
01

9
0.
00

7
0.
11

0
0.
15

3
0.
28

8
0.
33

7
0.
57

0
0.
46

2
0.
01

4
0.
20

7
0.
56

8
0.
32

5
0.
01

0
0.
04

9
0.
07

3
0.
06

7
0.
01

0
0.
20

5
0.
06

3
0.
23

4
7.
80

En
tr
op

y
0.
25

3
0.
31

0
0.
87

4
0.
17

7
0.
17

7
0.
76

0
0.
23

2
0.
04

9
0.
20

6
0.
17

7
0.
27

2
0.
36

1
0.
76

6
0.
47

0
0.
03

2
0.
13

6
0.
77

4
0.
23

4
0.
01

1
0.
05

2
0.
06

0
0.
08

3
0.
00

3
0.
27

1
0.
08

8
0.
27

3
6.
08

D
V

—
—

1
—

—
0.
91

6
—

—
0.
16

1
0.
15

3
—

—
0.
27

5
0.
33

1
—

—
0.
37

1
—

—
—

—
—

—
0.
22

6
—

—
—

Si
gD

T
0.
02

0
0.
18

9
1

0.
04

7
0.
04

9
0.
69

9
0.
19

3
0.
03

7
0.
19

1
0.
11

1
0.
31

6
0.
17

5
0.
81

1
0.
32

7
0.
06

8
0.
29

3
0.
35

3
0.
34

8
0.
04

8
0.
04

0
0.
03

4
0.
02

6
0.
01

9
0.
27

4
0.
02

5
0.
22

8
7.
18

CD
C_

D
R

0.
02

5
0.
24

7
0.
88

6
0.
18

7
0.
16

5
0.
78

4
0.
23

8
0.
01

2
0.
22

8
0.
17

1
0.
33

3
0.
35

0
0.
79

2
0.
40

1
0.
07

2
0.
16

7
0.
81

3
0.
32

5
0.
00

5
0.
06

2
0.
03

6
0.
09

4
0.
00

4
0.
00

7
0.
08

6
0.
26

0
5.
72

CM
S

0.
28

2
0.
22

5
1

0.
13

4
0.
14

9
0.
64

0
0.
29

7
0.
00

0
0.
18

1
0.
12

8
0.
23

0
0.
30

9
0.
80

4
0.
49

0
0.
01

4
0.
13

2
0.
77

8
0.
33

8
0.
00

0
0.
04

0
0.
11

8
0.
10

4
0.
00

0
0.
56

3
0.
06

0
0.
28

1
6.
54

CD
E

0.
18

4
0.
21

0
0.
90

5
0.
16

1
0.
14

5
0.
77

8
0.
15

8
0.
10

3
0.
19

1
0.
19

0
0.
33

1
0.
36

4
0.
76

9
0.
43

3
0.
05

8
0.
13

0
0.
78

6
0.
29

9
0.
01

3
0.
05

2
0.
06

6
0.
07

3
0.
00

5
0.
50

5
0.
07

6
0.
27

9
5.
60

H
et
2H

om
0.
23

4
0.
21

9
0.
98

9
0.
18

3
0.
19

7
0.
79

8
0.
01

2
0.
00

0
0.
15

7
0.
17

2
0.
24

8
0.
34

5
0.
77

1
0.
48

0
0.
00

3
0.
36

9
0.
77

7
0.
32

1
0.
01

2
0.
07

3
0.
08

2
0.
10

4
0.
00

1
0.
45

2
0.
05

5
0.
28

2
6.
04

H
D
-N

D
W

0.
26

5
0.
22

8
0.
84

3
0.
23

1
0.
25

8
0.
77

7
0.
14

7
0.
02

8
0.
25

4
0.
17

9
0.
40

8
0.
36

4
0.
77

9
0.
46

1
0.
03

4
0.
02

1
0.
78

5
0.
30

2
0.
00

7
0.
05

5
0.
09

5
0.
05

7
0.
00

4
0.
41

8
0.
11

3
0.
28

4
5.
04

CO
Fo

re
st

0.
24

0
0.
23

4
0.
90

8
0.
18

7
0.
17

9
0.
77

0
0.
10

3
0.
03

5
0.
13

5
0.
13

8
0.
22

4
0.
32

2
0.
80

5
0.
48

2
0.
02

8
0.
21

2
0.
66

9
0.
31

7
0.
01

1
0.
06

3
0.
08

9
0.
09

7
0.
01

7
0.
30

0
0.
09

3
0.
26

6
5.
60

A
RI

Ra
nd

om
0.
02

9
−0

.0
03

−0
.0
08

0.
00

6
−0

.0
01

0.
00

2
0.
00

1
0.
00

1
0.
00

0
−0

.0
01

0.
00

0
0.
00

0
−0

.0
01

0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

1
11

.6
0

 
-M

H
TC

0.
09

2
0.
17

4
0.
97

7
0.
14

3
0.
15

3
0.
76

8
0.
29

1
0.
03

7
0.
24

6
0.
20

3
0.
31

5
0.
10

0
0.
71

1
0.
57

8
0.
04

8
0.
09

3
0.
89

9
0.
36

6
0.
01

3
0.
04

4
0.
01

4
0.
10

7
0.
00

5
0.
42

1
0.
04

1
0.
27

4
4.
16

CU
0.
14

4
0.
07

9
0.
76

7
0.
11

9
0.
12

0
0.
49

5
0.
24

5
−0

.0
12

0.
16

4
0.
12

5
0.
23

2
0.
10

7
0.
67

0
0.
54

5
0.
03

2
0.
34

0
0.
68

6
0.
42

8
0.
02

4
0.
03

1
0.
05

2
0.
05

8
0.
01

0
0.
36

6
0.
07

4
0.
23

6
6.
12

 
-m

od
es

0.
12

3
0.
12

4
0.
73

6
0.
15

0
0.
09

3
0.
64

0
0.
01

3
−0

.0
10

0.
07

7
0.
14

1
0.
21

2
0.
09

1
0.
47

9
0.
53

4
0.
01

5
0.
25

7
0.
67

6
0.
40

3
0.
01

6
0.
02

5
0.
04

7
0.
08

9
0.
01

2
0.
22

9
0.
05

8
0.
20

9
7.
48

En
tr
op

y
0.
12

0
0.
20

3
0.
82

2
0.
12

0
0.
12

7
0.
63

6
0.
23

7
0.
02

1
0.
20

3
0.
15

8
0.
19

9
0.
12

0
0.
59

4
0.
54

4
0.
03

1
0.
15

1
0.
85

3
0.
27

1
0.
01

2
0.
02

4
0.
03

5
0.
07

5
0.
00

3
0.
26

1
0.
07

0
0.
23

6
6.
64

D
V

—
—

1
—

—
0.
95

3
—

—
0.
12

0
0.
05

7
—

—
0.
19

4
0.
44

9
—

—
0.
65

3
—

—
—

—
—

—
0.
14

0
—

—
—

Si
gD

T
0.
03

0
0.
14

7
1

−0
.0
02

0.
00

8
0.
59

2
0.
27

1
0.
03

2
0.
16

1
0.
16

6
0.
20

6
0.
08

3
0.
81

8
0.
36

5
0.
06

4
0.
34

7
0.
50

9
0.
41

9
0.
09

2
0.
02

1
−0

.0
68

0.
01

4
0.
01

0
0.
31

5
0.
03

1
0.
22

5
6.
94

CD
C_

D
R

−0
.0
43

0.
16

2
0.
81

0
0.
11

2
0.
10

8
0.
72

0
0.
28

1
−0

.0
03

0.
23

2
0.
15

7
0.
24

3
0.
11

5
0.
64

6
0.
49

9
0.
08

6
0.
20

1
0.
89

4
0.
40

1
0.
01

2
0.
03

4
0.
01

5
0.
09

4
0.
00

4
0.
00

3
0.
07

4
0.
23

4
6.
00

CM
S

0.
16

7
0.
16

0
1

0.
07

5
0.
09

3
0.
49

4
0.
27

7
−0

.0
15

0.
18

8
0.
09

0
0.
18

1
0.
08

9
0.
74

4
0.
57

1
0.
01

5
0.
15

8
0.
86

1
0.
42

6
−0

.0
01

0.
02

8
0.
07

6
0.
10

2
0.
00

0
0.
62

7
0.
05

2
0.
25

8
6.
26

CD
E

0.
07

9
0.
13

1
0.
85

1
0.
10

2
0.
10

4
0.
70

4
0.
19

1
0.
09

6
0.
18

8
0.
18

0
0.
24

7
0.
12

7
0.
64

1
0.
52

9
0.
05

6
0.
14

6
0.
87

1
0.
36

9
0.
02

2
0.
03

3
0.
02

8
0.
07

4
0.
00

7
0.
54

6
0.
05

7
0.
25

5
6.
00

H
et
2H

om
0.
09

8
0.
14

5
0.
98

4
0.
13

1
0.
15

3
0.
67

2
0.
00

4
−0

.0
15

0.
16

7
0.
12

6
0.
17

6
0.
11

8
0.
71

1
0.
55

7
0.
00

1
0.
45

7
0.
87

1
0.
39

6
0.
01

5
0.
04

5
0.
04

7
0.
10

0
0.
00

1
0.
55

7
0.
03

4
0.
26

2
5.
92

H
D
-N

D
W

0.
14

0
0.
13

6
0.
77

5
0.
17

1
0.
21

1
0.
70

0
0.
14

5
0.
01

7
0.
24

3
0.
22

1
0.
31

2
0.
12

4
0.
66

2
0.
53

7
0.
03

8
0.
00

3
0.
87

7
0.
37

1
0.
01

8
0.
03

5
0.
05

6
0.
08

2
0.
00

4
0.
41

6
0.
09

1
0.
25

5
4.
72

CO
Fo

re
st

0.
12

1
0.
13

2
0.
86

9
0.
11

7
0.
12

2
0.
65

5
0.
11

2
0.
01

9
0.
12

8
0.
11

5
0.
12

9
0.
08

6
0.
68

9
0.
56

6
0.
03

0
0.
25

0
0.
75

9
0.
39

6
0.
01

8
0.
03

9
0.
04

9
0.
09

9
0.
02

0
0.
35

5
0.
06

6
0.
23

8
6.
16

Ea
ch

al
go

rit
hm

is
ru

n
fo
r5

0
ex

ec
ut
io
ns

(e
xc

ep
tf

or
D
V

an
d
Si
gD

T)
,a

nd
th
e
av

er
ag

e
cl
us

te
rin

g
re
su

lts
ar
e
re
po

rt
ed

.M
et
ric

va
lu
es

lo
w
er

th
an

th
os

e
fr
om

th
e
ra
nd

om
pa

rt
iti
on

s(
us

in
g
th
e
sa
m
e
in
iti
al
iz
at
io
n
as

in
 

-M
H
TC

an
d
CU

)a
re

m
ar
ke

d
in

bl
ue

.I
fD

V

fa
ils

to
fin

d
an

y
st
at
is
tic

al
ly

si
gn

ifi
ca

nt
cl
us

te
rs

fo
ra

gi
ve

n
da

ta
se
t,
its

re
su

lt
is

de
no

te
d
as

“—
.”
Fo

rC
M
S
an

d
H
et
2H

om
&

H
D
-N

D
W
,t
he

pa
ra
m
et
er
sa

re
fix

ed
to

be
0.
5
an

d
0,

re
sp

ec
tiv

el
y.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 5, Article 109. Publication date: June 2025.



109:18 L. Hu et al.

Ta
bl
e
6.

Th
e
R
un

ni
ng

Ti
m
e
fo
r
50

Ex
ec
ut
io
ns

of
Ea

ch
A
lg
or
it
hm

ac
ro
ss

25
D
at
as
et
s,
A
lo
ng

w
it
h
th
e
To
ta
lR

un
ni
ng

Ti
m
e
of

Ea
ch

A
lg
or
it
hm

M
et
ho

d
Ls

Lc
So

Pe
A
e

Zo
Ps

H
r

Ly
H
d

Sf
Pt

D
e

H
v

Bs
Ca

Bc
M
m

Tt
Le

Ce
Ti

Ch
M
u

N
u

To
ta
l

 
-M

H
TC

<
1

<
1

<
1

<
1

<
1

1.
2

1.
6

<
1

1.
7

4.
3

2.
5

21
.5

9.
5

1.
2

<
1

1.
9

1.
2

<
1

2.
5

3.
9

3.
9

3.
9

34
.3

51
.7

43
.9

19
3.
8

CU
<
1

<
1

<
1

<
1

<
1

1.
6

2.
5

<
1

1.
9

5.
1

3.
8

37
.8

21
.5

1.
0

1.
1

2.
3

1.
2

<
1

4.
2

3.
3

5.
7

5.
1

94
.1

79
.3

84
.9

35
8.
5

 
-m

od
es

<
1

1.
5

<
1

<
1

<
1

1.
2

7.
3

<
1

2.
6

3.
9

2.
6

7.
2

14
.0

7.
0

3.
4

9.
1

10
.2

5.
3

17
.3

6.
5

18
.6

12
.4

42
4.
1

2.
E+

03
65

1.
6

3.
E+

03
En

tr
op

y
<
1

2.
5

2.
4

<
1

<
1

10
.6

8.
0

1.
5

13
.3

37
.2

23
.9

24
8.
8

10
5.
7

11
.2

9.
6

8.
1

12
.4

6.
2

12
.5

35
.9

60
.4

44
.6

19
6.
6

33
9.
3

99
3.
2

2.
E+

03
D
V

<
1

87
.4

37
.6

5.
1

5.
1

47
.7

2.
E+

03
2.
2

55
7.
1

3.
E+

03
16

.4
35

9.
6

4.
E+

03
41

7.
0

16
.0

21
0.
2

3.
E+

03
2.
9

54
3.
8

6.
3

11
8.
2

<
1

4.
E+

04
1.
E+

06
7.
E+

03
1.
E+

06
Si
gD

T
<
1

<
1

<
1

<
1

<
1

<
1

1.
9

<
1

<
1

<
1

<
1

<
1

1.
4

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

13
.5

10
.4

0.
8

32
.0

CD
C_

D
R

<
1

<
1

<
1

<
1

<
1

<
1

1.
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

<
1

7.
9

25
.5

49
.5

90
.2

CM
S

<
1

3.
5

<
1

<
1

<
1

<
1

9.
3

<
1

<
1

1.
3

<
1

1.
1

5.
0

1.
6

1.
5

2.
8

4.
3

2.
7

4.
4

3.
9

14
.9

19
.2

95
.1

50
1.
9

88
4.
5

2.
E+

03
CD

E
<
1

8.
5

1.
6

<
1

<
1

<
1

19
.7

<
1

1.
8

1.
7

<
1

1.
4

7.
7

2.
0

<
1

1.
6

3.
7

<
1

1.
4

<
1

<
1

<
1

19
.1

39
.5

6.
3

12
2.
3

H
et
2H

om
<
1

12
.8

3.
4

3.
9

4.
0

3.
3

34
.8

<
1

12
.6

71
.4

7.
6

93
.2

10
9.
9

15
.9

20
.9

24
.6

32
.2

7.
0

8.
6

17
.5

16
.3

1.
8

12
2.
7

83
2.
9

38
0.
8

2.
E+

03
H
D
-N

D
W

<
1

2.
6

<
1

<
1

<
1

1.
3

9.
3

<
1

3.
4

11
.8

3.
9

34
.7

23
.0

2.
2

2.
2

3.
1

13
.3

1.
6

6.
4

9.
5

13
.1

1.
7

63
.3

13
8.
2

14
8.
3

49
4.
6

CO
Fo

re
st

<
1

1.
5

<
1

<
1

<
1

1.
2

3.
6

<
1

3.
2

7.
2

3.
5

30
.1

21
.0

1.
7

28
.1

1.
4

6.
2

1.
3

4.
0

7.
7

7.
9

1.
2

52
.2

87
.5

79
.4

35
2.
3

Fo
rD

V
an

d
Si
gD

T,
ex

ec
ut
ed

on
ly

on
ce
,t
he

ir
ru

nn
in
g
tim

e
is

es
tim

at
ed

by
m
ul
tip

ly
in
g
th
e
si
ng

le
-e
xe

cu
tio

n
tim

e
by

50
.R

un
ni
ng

tim
es

of
le
ss

th
an

1
se
co

nd
ar
e
de

no
te
d
as

“<
1,”

w
hi
le

th
os

e
ex

ce
ed

in
g
1,
00

0
se
co

nd
sa

re
ex

pr
es
se
d
in

ex
po

ne
nt
ia
lf
or

m
.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 5, Article 109. Publication date: June 2025.



Clustering Categorical Data via Multiple Hypothesis Testing 109:19

Fig. 2. Comparison of  -MHTC vs. other methods based on two-tailed Bonferroni-Dunn test [30] at the 95%
CI. The Critical Difference (CD) is calculated by using the number of comparison methods, the corresponding
critical value, and the number of datasets in which these methods are performed. In every subfigure, each
method has a position in the diagram based on its average rank, where the CD interval can be located.
Taking the best-performing  -MHTC and the worst-performing  -modes as reference points, any method
ranking outside the marked CD intervals is believed to be statistically significantly worse than  -MHTC or
not significantly different from  -modes, respectively. (a) Comparison with all methods on eight DV-verified
datasets, where DV reports statistically significant individual clusters. (b) Comparison with all methods
(except DV) on 18 SigDT-verified datasets, where SigDT reports statistically significant partitions.

superior to -modes across all three metrics and outperforms CU in terms of NMI and ARI. On
the 18 SigDT-verified datasets (Lc, So, Zo, Ps, Ly, Hd, Sf, Pt, De, Hv, Ca, Bc, Mm, Tt, Le, Ti, Ch,
Mu), as shown in Figure 2(b),  -MHTC demonstrates statistically significant improvements
over Entropy in ARI.

—Comparison with SOTA Methods: In terms of all three metrics,  -MHTC can beat best-
performing methods CDE, Het2Hom, and HD-NDW on 16, 16, and 14 datasets, respectively.
Although CDC_DR runs more efficiently than  -MHTC by employing a graph-based repre-
sentation and using :-means, it can only achieve fully superior clustering results on three
datasets (Pt, Bs, Ca). Moreover, it seems that CDC_DR fails to detect a meaningful clustering
structure on Ls and Hr since the ARI values are negative. Notably, whether on DV-verified or
SigDT-verified datasets, none of these SOTA methods exhibit statistically significant supe-
riority over the worst-performing  -modes in the comparison, within the 95% CI shown in
Figure 2. In addition, it is not an easy task to specify ideal parameters for CMS, Het2Hom,
and HD-NDW. For example, in order to obtain the number of ordinal attributes, we need to
acquire domain knowledge that goes beyond the information encoded in the datasets.

4.2 Convergence and Scalability Comparison
To evaluate the convergence of -MHTC in finding locally optimal clusters, we examine the number
of iterations (I, as recorded in Algorithm 1) required for its objective function (SCS) to reach a local

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 5, Article 109. Publication date: June 2025.



109:20 L. Hu et al.

Fig. 3. Convergence curves of  -MHTC on 25 datasets. In each plot, all convergence curves across 50
executions are displayed, in which the curves with the minimum and maximum iteration counts are marked
in blue and red, respectively. The boxplot in the upper-left corner illustrates the distribution of iteration
counts across all 50 × 25 cases, compared to those of CU.

optimum, as shown in Figure 3. For each dataset, we run  -MHTC 50 times with different random
partitions in the initialization, with each run yielding varying iteration counts and final SCS values.
Despite the random initialization, the distribution of iteration counts across all 25 datasets shows
that the median does not exceed 5, while the maximum iteration count reaches 20 in a single run
on Hd (as indicated by an outlier in the boxplot in Figure 3). Overall, the number of iterations is
considerably lower than that required by CU.

To evaluate the scalability of  -MHTC on large-scale datasets, we adjust the scale by randomly
generating synthetic datasets with proportionally increasing numbers of objects (# ) and attributes
("), varying one while keeping the other fixed. Following this strategy, the execution time curves
are plotted in Figure 4, where we also include six most time-efficient competing methods according
to the results in Table 6. From the execution time curves with varying # , we observe that  -MHTC
performs similarly to COForest, with both ranking third among all compared methods. While
increasing " quickly raises the computational cost for  -MHTC due to the growing number of
Chi-square statistic calculations in the MHT-based objective function. Note that the running time
curve for varying" exhibit a clear linear growth trend, aligning with the time complexity analysis
in Section 3.3.3. Among the SOTA algorithms, CDE is particularly sensitive to the increase of" ,
suggesting it may not be well-suited for high-dimensional data.

4.3 Validity of SCS and the Combined ?-Value
4.3.1 Validity of SCS. As a significance-based objective function, it is designed to obtain clus-

tering results that are distinguished from random partitions. From the left subfigure in Figure 5, we
observe that all 10 :-partition clustering algorithms yield results with SCS values greater than those
of random partitions. However, such random partitions may be overly idealized, and further study
is needed to examine how varying degrees of randomness affect SCS, from completely randomized
partitions (as used in Section 4.1) to partially randomized partitions (in the upcoming simulation
experiments).

To generate a partially randomized partition, we first treat the set of cluster labels as an ordered
vector of length # . Next, we randomly select a fraction of # positions, specifically~% of # positions
(i.e., (~/100) × # positions), and shuffle the labels at these positions. This process reassigns the
cluster labels of the selected objects. For example, consider a dataset with # = 500 objects. If we set
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Fig. 4. Execution time curves (averaged over 10 runs) of each algorithm on synthetic datasets. Each dataset
is generated along attributes, with each attribute having five categories randomly assigned to objects, and
clustering algorithms are executed with fixed  = 5. Left subfigure: # = 10,000 → 100,000 (step 10,000), with
fixed" = 20. Right subfigure:" = 100 → 1,000 (step 100), with fixed # = 2,000.

Fig. 5. Comparison of SCS and the combined ?-value between algorithm-derived and random partitions. All
partition results are consistent with those used in Table 5. The left subfigure presents the average SCS value
per run on each dataset for different methods, with each method based on 25× 50 partitions. The average
SCS of GT partitions across 25 datasets is included as a reference. The right subfigure displays the empirical
CDF of the combined ?-value for each set of 25× 50 algorithm-derived partitions, highlighting the curves of
 -MHTC, random partitions, and the theoretical uniform CDF. CDF, cumulative distribution function.

~ = 1, we randomly select 1% × 500 = 5 positions. Using the MATLAB function randperm(500,5),
we might obtain the positions [323, 189, 405, 265, 174]. We then sort these selected positions
to obtain [174, 189, 265, 323, 405] and reassign the cluster labels accordingly. As a result, only
the cluster labels of these five objects are randomized. By varying ~ between 1 and 100, we can
generate partitions that range from being very similar to the original cluster labels (low randomness)
to completely randomized (high randomness). This approach allows us to control the degree of
randomness introduced into the partitions.
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Fig. 6. Scatter plot of SCS vs. metrics with varied randomized GT partitions on each dataset.

We conduct simulation experiments on 25 datasets by perturbing cluster labels in their cor-
responding GT partitions. The parameter ~ is varied from 5 to 100 in 20 steps. To ensure stable
numerical results at each step, we perform 50 randomized trials and compute the average ACC,
NMI, ARI, and SCS. As shown in Figure 6, the increase of SCS values exhibits an approximately
linear relationship with the increase of performance metrics. Notably, for each dataset, the values of
NMI and ARI are distributed between 0 and 1, indicating that our simulation procedure is reasonable
for validating SCS across partitions with varied clustering quality.

4.3.2 Validity of the Combined ?-Value. To assess whether a partition is statistically significant
or not, we can directly calculate the combined ?-value by using the rOP method in which A is set
to be b0.5 ·"c for the given dataset. In order to confirm the validity of the combined ?-value, we
first show that a random partition typically is associated with a quite large ?-value, while the GT
or algorithm-optimized partition generally has a small ?-value, often close to 0. Then, we further
demonstrate that the combined ?-value is effective in assessing clustering quality, as measured by
external metrics such as ACC, NMI, and ARI.

We collect the combined ?-values of algorithm-optimized and random partitions across all
25 datasets and show their empirical cumulative distribution function (CDF) curves in the
right subfigure of Figure 5. It is observed that the combined ?-values of random partitions are
approximately uniformly distributed, meaning that the probability of obtaining a value smaller
than 0.01 is close to only 1%. In contrast, all CDF curves of algorithm-optimized partitions exhibit
clear deviations from uniformity and a skew toward smaller ?-values or zeros. Notably, SCS-
optimized partitions (the empirical CDF curve of  -MHTC) also exhibit sensitivity to datasets
lacking clustering tendency, particularly as multiple partitions yield the combined ?-values equal to
1 on unclusterable datasets (Ls, Bs, Ce, and Nu). These four datasets are identified as unclusterable
by TestCat [45], a well-designed clusterability test method for categorical data.

As shown in Figure 7, the combined ?-values for random partitions are generally greater than
the significance level of 0.01 across all datasets, indicating that such arbitrary partitions are not
statistically significant. In contrast, clustering algorithms predominantly produce valid partitions,
consistently generating partitionswith a combined ?-value≤ 0.01 in nearly all runs onmost datasets.
However, on unclusterable datasets (Ls, Bs, Ce, and Nu), even algorithm-optimized partitions
are regarded as being statistically invalid in approximately 5% to 20% of cases. This suggests
that optimizing objective functions does not guarantee finding a true clustering structure, and
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Fig. 7. The combined ?-values in algorithm-optimized partitions vs. random partitions. The distribution of
resulting ?-values for each dataset is profiled based on its frequency over 50 runs, categorized by a significance
level of 0.01 and separately displayed for the two types of partitions. For algorithm-optimized partitions, the
reported frequency represents the average value across 10 :-partition clustering algorithms, excluding DV
and SigDT.

any algorithm-derived partitions, especially on completely randomized datasets, require further
validation.

All GT partitions on 25 datasets are statistical significant where the ?-value < 0.01. For example,
the ?-values of the GT partitions on Ls, Lc, Pe, Ae, Ps and Tt are 6.83E−4, 2.03E−5, 4.46E−11,
2.66E−12, 7.38E−9, and 1.84E−14, respectively. In addition, the ?-values of the GT partitions on So,
Zo, Ly, Hd, De, Hv, Bc, and Mu are zeros on which the DV method can find statistically significant
clusters.

If one dataset has a clear and strong clustering structure, it can be expected that the corresponding
optimized partitions will yield statistically significant results, while most clustering algorithms can
achieve relatively good performance. To aid both illustration and interpretation, we first group the
datasets using our method as well as other significance-based methods. As shown in the last row of
Table 7, we use the combined ?-value as a validation indicator for data-related :-partition results.
Based on whether all partitions are claimed to be statistically significant by our method, the dataset
is classified as either - (sig) (marked with “Ø” by “Ours” in Table 7) or - (unsig) as follows:

—- (sig): {So, Pe, Ae, Zo, Ly, Hd, Pt, De, Hv, Ca, Bc, Le, Mu}.
—- (unsig): {Ls, Lc, Ps, Hr, Sf, Bs, Mm, Tt, Ce, Ti, Ch, Nu}.

Similarly, datasets verified by DV and SigDT (marked with “Ø” by DV and SigDT in Table 7) are
grouped as follows:

—- (DV): {So, Zo, Ly, Hd, De, Hv, Bc, Mu}.
—- (SigDT): {Lc, So, Zo, Ps, Ly, Hd, Sf, Pt, De, Hv, Ca, Bc, Mm, Tt, Le, Ti, Ch, Mu}.
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Fig. 8. The box-plots of the average ranks based on the results in Table 7.

Our method shares similar characteristics with DV and SigDT. We observe that DV is a subset
of - (sig), while all datasets in - (SigDT) either belong to - (sig) or are assigned high percentages
(ranging from 97.4% to 99.4%) as measured by the combined ?-value shown in the last row of Table 7.
Next, we leverage the metric row of Table 7 to assess whether significance-verified clusterable
datasets are more likely to yield high-quality :-partition results. In summary, the overall means of
ACC, NMI, and ARI across all datasets in - (unsig) are 0.504, 0.129, and 0.108, respectively, while
the corresponding overall means in - (sig) increase to 0.630, 0.404, and 0.373. From Figure 8, we
conclude that clustering methods achieve better overall performance on datasets associated with
a statistically significant partition. Moreover, the existence of statistically significant individual
clusters or splits also contribute to improved performance. - (DV), - (sig), and - (SigDT) all show a
higher median average rank with a clear distinction from - (unsig) across all metrics.

4.3.3 Robustness to Parametric Assumptions. There are two main parametric assumptions un-
derlying  -MHTC and the combined ?-value:

—The rOP method, which aggregates multiple single ?-values across all attributes, depends
on the selection of a parameter A . We set A = b0.5 ·"c by default and have demonstrated its
effectiveness in Section 4.3.2. However, it remains to be investigated whether the combined
?-value remains effective under alternative choices of A , i.e., how robust the method is to
variations in A when different degrees of randomness are introduced.

—The Chi-square test requires a sufficient sample size in each cell of the contingency table.
This assumption may be violated in some real-world categorical data, particularly in small
datasets (i.e., when # is small). To assess this, we perform simulation experiments on small
datasets with attached GT cluster labels that should consistently yield statistically significant
partitions, and empirically evaluate how small # can be before the validity of the combined
?-value is degraded.

Simulation Study for Various A : We adopt the same strategy used in Section 4.3.1 to generate
partially randomized partitions with varying degrees of randomness. For each selected value of A ,
we plot a curve showing the median combined ?-values as the randomization process is applied
to the 25 GT partitions across all datasets. The parameter A is varied from A = b0.01 ·"c to A ="
over 100 values. As shown in the left subfigure of Figure 9, we observe that when A = b0.5 ·"c, the
method remains robust to up to 75% randomness introduced into the GT partitions. In particular,
the median of the combined ?-value remains below 0.01 at the 75% randomization level, indicating
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Fig. 9. Robustness of the combined ?-values calculated via rOP against increasing randomness measured by
the percentage (~%) of shuffled cluster labels, with the parameter set to the default A = b0.5 ·"c vs. various A .
In the right subplot, A varies from b0.01 ·"c to b1 ·"c in 100 steps. Curves with A < b0.5 ·"c are shown in
light red, those with A > b0.5 ·"c are shown in light blue, and the curve for A = b1 ·"c is marked in dark
blue.

that such partially randomized partitions still tend to be identified as statistically significant. When
the median curve for A = b0.5 ·"c is compared with those in the right subfigure of Figure 9,
we observe that the combined ?-values tend to be slightly smaller when A < b0.5 ·"c (light red
curves), and slightly larger when A > b0.5 ·"c (light blue curves). Notably, when A = " (dark
blue curve), the combined ?-values become substantially larger than those with A ≤ b0.99 ·"c.
Nevertheless, the method still remains robust up to approximately 50% randomization, which is
acceptable for potential practical use.
Simulation Study for Small Datasets: We examine three clusterable datasets, each consisting of

two clusters, to isolate the effect of  . A small number of objects are sampled from each, and
their GT partitions are evaluated using the combined ?-value. As shown in Figure 10, the rate of
misidentification varies with sample size. In general, the combined ?-value becomes less reliable
when the sample size # falls below 24. In particular, at # = 4, the misidentification rate can exceed
50%, rendering the result no longer usable. In contrast, as # increases, for instance when it exceeds
26, the combined ?-value remains consistently valid. This is supported by the results for # between
26 and 200 shown in the figure, where almost no failures in identifying significant partitions are
observed.

4.4 Case Study
To demonstrate the practical utility of our method in real-world clustering analysis, we select a
representative dataset from our experiments that contains two well-defined clusters and interpret
the clustering results in the context of attribute semantics. In the field of social science, the House
Votes dataset is commonly used to quantify ideological divergence between two major groups,
typically corresponding to political parties.

As shown in the left subfigure of Figure 11, the individual ?-values associated with each voting
issue (i.e., attribute) are displayed as bar plots, corresponding to the  -MHTC-derived partition
and the GT partition, respectively. We observe that different voting issues contribute unequally to
the disagreement between the two political groups (i.e., clusters). In other words, some issues play
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Fig. 10. Percentage of GT partitions misidentified as being non-significant on sampled small datasets. Each
sample size is randomly drawn 100 times, generating 100 GT partitions. Hv, Bc, and Mu are chosen for their
verified clustering tendency and sufficiently large samples per cluster. Objects from both clusters (each
original dataset contains two clusters), along with their GT labels, are evenly sampled, with 2 to 100 samples
per cluster, resulting in total sample sizes ranging from 4 to 200.

Fig. 11. Case study: Interpreting clustering results on the House Votes dataset (Hv) by ranking the importance
of voting issues.

a more critical role in shaping the division between clusters, while others exhibit less disagreement
and thus provide limited discriminative power.

From the perspective of hypothesis testing, the significance level can be interpreted as a threshold
for major disagreement: voting issues with individual ?-values below this threshold are considered
to reflect strong opposition between the two groups, whereas those above the threshold indicate
relatively weak or non-salient disagreement. This observation is further illustrated in the right
subfigure of Figure 11, where we compare the intra-group support rates (i.e., the proportion of
members within each cluster that vote consistently) for the top three and bottom three ranked
attributes. These examples intuitively demonstrate how attribute importance relates to intra-cluster
compactness. For the two voting issues with non-significant ?-values, we find that neither party
exhibits a clear majority preference (i.e., support for either “Yea” or “Nay”), suggesting that these
issues contribute insufficiently to the formation of opinion-based clusters.

5 Conclusion
To obtain a set of meaningful clusters from categorical data, we propose a new clustering algorithm,
 -MHTC, which achieves high ACC and computational efficiency based on MHT. The statistical
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significance of the resulting clustering structure is assessed by a combined ?-value via meta-
analysis. In contrast to existing significance-based clustering methods, it is the first time that the
cluster analysis issue is formulated as an MHT problem.

Through extensive empirical studies, the benefit of our ?-value-based method has been exper-
imentally demonstrated in two main aspects: (1) If there is no clustering structure in a target
categorical dataset, a quite large ?-value will be delivered. It indicates that the clustering results
are not recommended for further use. (2) If many standard and SOTA methods can achieve good
clustering results in terms of extremely small ?-values, then it means that a clustering structure
really exists in the given dataset.
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