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Numerous clustering algorithms prioritize accuracy, but in high-risk domains, the interpretability 
of clustering methods is crucial as well. The inherent heterogeneity of categorical data makes it 
particularly challenging for users to comprehend clustering outcomes. Currently, the majority of 
interpretable clustering methods are tailored for numerical data and utilize decision tree models, 
leaving interpretable clustering for categorical data as a less explored domain. Additionally, 
existing interpretable clustering algorithms often depend on external, potentially non-interpretable 
algorithms and lack transparency in the decision-making process during tree construction. In this 
paper, we tackle the problem of interpretable categorical data clustering by growing a decision 
tree in a statistically meaningful manner. We formulate the evaluation of candidate splits as 
a multivariate two-sample testing problem, where a single 𝑝-value is derived by combining 
significance evidence from all individual categories. This approach provides a reliable and 
controllable method for selecting the optimal split while determining its statistical significance. 
Extensive experimental results on real-world data sets demonstrate that our algorithm achieves 
comparable performance in terms of cluster quality, running efficiency, and explainability relative 
to its counterparts.

1. Introduction

Clustering is an exploratory technique aiming to simplify complex data sets by dividing homogeneous objects into distinct groups. 
Numerous clustering algorithms have been developed from different perspectives, with partitional methods [1], density-based meth-
ods [2], model-based methods [3], and hierarchical methods [4] being the most widely used in practice. The output clusters are 
utilized across a wide range of domains, such as healthcare, management, and industry, many of which are characterized by inher-
ently high-risk scenarios [5]. In such contexts, the involvement of experts in monitoring and ensuring accountability is essential. 
Consequently, making clustering algorithms interpretable is vital [6], allowing human users to thoroughly understand the decision-
making processes and identify risks at any stage of the clustering procedure. Unfortunately, the development of interpretable clustering 
algorithms has only received limited attention recently.

Since categorical data sets are ubiquitous across different domains and widely accessible, the issue of categorical data clustering [7]
has received special attention and investigation over the past decades. Essentially, most existing clustering algorithms for categorical 
data are developed along similar lines as their counterparts for numeric data. Similarly, the issue of interpretable categorical data 
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Table 1

SigDT vs existing interpretable clustering algorithms. CUBT is separately mentioned because it is the only interpretable categorical 
data clustering algorithm in the literature so far.

Clusterability prediction Interpretable splitting Cluster number prediction

SigDT ✓ ✓ ✓

CUBT and other pre-modeling algorithms ✗ ✗ ✓

Post-modeling algorithms ✗ ✗ ✗

clustering is relatively unexplored in the literature as well. To our knowledge, only the method called CUBT in [8] is particularly 
designed for the purpose of producing interpretable clustering results from categorical data.

The decision tree is one of the most commonly used models for characterizing interpretable clustering results [9]. In this paper, we 
also adopt the decision tree as the clustering model for generating interpretable clusters, i.e., the rule along the path from the root node 
to each leaf node explains why samples are assigned to the corresponding cluster. To date, some tree-based interpretable clustering 
algorithms are already available in the literature [10,11], of which only the algorithm in [8] is directly tailored for categorical data. 
Regardless of the target data types, these existing interpretable clustering methods can be broadly classified into two categories: 
(1) In the first category of post-modeling algorithms, decision trees are constructed based on the guidance of clustering result of a 
third-party clustering algorithm [12,13]. (2) In the second category of pre-modeling algorithms, the clustering decision tree is directly 
constructed from the data sets by either optimizing a joint objective function [14,15] or utilizing a greedy tree-growth algorithm in 
a top-down manner [16,17].

Despite the success of existing solutions for solving the interpretable clustering issue, there are still several deficiencies that have 
not been resolved:

• Clusterability prediction: Some data sets may inherently lack a clustering structure (the data is composed of only one cluster). 
For such types of data sets, it is meaningless to conduct cluster analysis no matter whether the clustering method is interpretable 
or not. Hence, interpretable clustering algorithms should be capable of assessing the clusterability of the target data set, i.e., 
providing an “explanation” of the plausibility of dividing the data into multiple clusters.

• Interpretable splitting: The existing optimization-based algorithms can only ensure that the clustering result is interpretable in 
terms of decisions trees, failing to guarantee that clustering process is also explainable. That is, decision-making at each split 
should be trustful and interpretable as well. Such an interpretable splitting capability will certainly enhance our confidence in 
explaining both the clustering model and its results.

• Cluster number prediction: An interpretable algorithm should minimize the number of input parameters required for its au-
tonomous decision-making process, aiding users in understanding the model. A key parameter often unknown is the number of 
clusters, which is typically hard to specify in practice. Hence, it is highly desirable to automatically determine the number of 
clusters in an interpretable manner.

Motivated by above observations, we present a new interpretable clustering algorithm for categorical data, which is named as 
SigDT (Significance-based Decision Tree). SigDT tackles above-mentioned challenges by introducing the statistical significance testing 
technique into the unsupervised decision tree construction process. As summarized in Table 1, SigDT has several advantages over 
existing interpretable clustering methods.

More precisely, the SigDT algorithm orchestrates the clustering process by constructing a decision tree akin to conventional ones. 
At each branch node, one candidate split divides current samples into two groups. Under the null hypothesis that these two groups 
have no difference, the candidate split assessment problem can be casted as a multiple hypothesis testing issue, where each individual 
test is to compare two success probabilities of each attribute value across two groups. According to the significance testing result in 
terms of 𝑝-values, we can either accept or reject the best candidate split by comparing its 𝑝-value with a significance level threshold.

Obviously, SigDT can alleviate those mentioned challenges faced by current interpretable clustering algorithms in a unified and 
elegant manner. Firstly, at the root node, if 𝑝-values of all candidate splits are larger than the significance level, then we can claim that 
the data set is unclusterable and it is not necessary to conduct the cluster analysis. Secondly, since the split point is chosen based on a 
rigorous significance testing procedure, the clustering process (tree growth process) and the splitting decision are at least explainable 
in a statistical sense. Finally, by specifying a significance level threshold, we can stop the tree growth procedure if 𝑝-values of all 
candidate splits for each leaf node cannot pass the threshold. As a result, we automatically determine the number of clusters (i.e. leaf 
nodes) and this number is statistically explainable.

In summary, the main contributions of our work to the field of interpretable clustering are as follows:

• We introduce the first trustworthy and understandable decision tree construction algorithm for interpretable categorical data 
clustering from a hypothesis testing perspective.

• Our method ensures statistical interpretability at each branch node, with the corresponding partition being statistically sig-
nificant. As a by-product, it can automatically assess the clusterability and determine the number of clusters under the same 
umbrella.

• A simulated study demonstrates that our method can determine not to split at the root node for unclusterable data.
• Extensive experiments on real categorical data sets demonstrate our method’s competitive performance compared to both non-
2

interpretable and other interpretable clustering methods.
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The structure of this paper is organized as follows: Section 2 reviews methods most relevant to our study. Section 3 presents a 
detailed description of our proposed method. Section 4 presents the experimental results on both simulated and real data sets. Finally, 
Section 5 concludes the paper.

2. Related work

Given the limited research efforts on interpretable categorical data clustering, we will review two related fields: interpretable 
clustering methods and categorical data clustering approaches. Additionally, our method has a distinct characteristic that is also 
connected to concepts in clusterability evaluation methods.

2.1. Interpretable clustering

Users find high-dimensional data clustering easier to understand when it is based on simple rules for individual features or 
attributes, rather than clusters relying on all dimensions simultaneously. To meet this need, a variety of interpretable models have 
been proposed, including logical formulas [18], rules [19], decision trees [20], and geometric boundaries such as prototypes [21], 
hyper-rectangles [22], hypercubes [23], polytopes [24], and polyhedron [25]. Among these, binary decision trees [12,17,26,27] stand 
out as the most popular and promising model. They offer a clear pathway to trace how clusters are derived, depending on individual 
feature values, from the root to leaf nodes.

In post-modeling algorithms, binary decision trees create a fixed number of leaf nodes, each corresponding to an explainable 
cluster closely aligned with its original cluster from a third-party clustering algorithm. Most algorithms in this category first obtain 
initial clustering result using 𝑘-means and then construct the decision tree based on the splitting criteria that try to approximate the 
optimal 𝑘-means cost [26,27]. In addition, some penalty factors such as the depth per leaf node can be incorporated into the cost 
function to yield more concise decision tree [12]. Obviously, such post-modeling algorithms have several limitations: the number of 
clusters has to be specified in advance and each split is evaluated based on a cost function that lacks a statistical interpretability.

In pre-modeling algorithms, the number of clusters can be automatically determined according to the number of leaf nodes of 
constructed decision tree. These methods encounter two main challenges: identifying the optimal split and determining the right time 
to stop splitting. Existing strategies commonly choose optimal splits based on inter-cluster separation and intra-cluster compactness 
of the candidate partition, typically through distance-based [14,28] or heterogeneity [17,8] measures. However, these metrics do 
not offer statistical interpretability, making it challenging to qualitatively justify whether the optimal split should be adopted for 
tree growth. As a result, establishing a truly effective stopping condition is a challenging issue, with trivial ones, such as ensuring a 
minimum number of objects in each leaf node, being routinely applied. To obtain a concise tree with less leaf nodes, a post hoc phase 
that includes pruning and merging processes is typically indispensable.

Hypothesis testing methods have been employed in some studies to construct decision trees: one facilitates tree growth [29], and 
the other serves as a stopping condition [16]. However, the former requires some known ground-truth labels in a supervised setting, 
making it unsuitable for interpretable clustering. The latter, as emphasized in its original paper, does not employ a strict statistical 
test since its assumptions may not hold in practice. More critically, it cannot provide analytical 𝑝-values, marking a fundamental 
difference from our method.

2.2. Categorical data clustering

In the field of cluster analysis, customized clustering algorithms have to be developed when we are trying to partition a specific 
type of data samples into different clusters. In particular, clustering categorical data, which involves discrete feature values, often 
makes standard numerical clustering methods unsuitable. Hence, the development of new algorithms for clustering categorical data 
has been widely investigated during the past decades.

In the field of categorical data clustering, a wide range of classic algorithms has been proposed, encompassing the most com-
monly used approaches such as partitional methods [30], density-based methods [31], model-based methods [32], and hierarchical 
methods [33]. Owing to the inherent discrete nature of categorical data, clusters typically comprise heterogeneous objects, which 
are not readily understood or interpreted through the geometric spaces applicable to numerical data. This heterogeneity stems from 
intra-attribute categories that lack quantifiable relationships and from inter-attribute differences where various attributes may exhibit 
distinct contexts.

Numerous similarity measures have been developed to describe the relationships between pairs of categorical objects, among 
which Hamming distance [30] and Entropy-based measures [34] are the most commonly used. To improve clustering accuracy, 
advanced clustering methods for categorical data often focus on analyzing the relationships among categorical values through complex 
representation learning techniques [35]. A common strategy involves embedding categorical data into a numerical format and then 
applying 𝑘-means [36]. However, these approaches often yield difficult-to-explain clustering outcomes, as the intermediate stages of 
representation learning are black-box methods and are decoupled from, as well as independent of, the final 𝑘-means cost function.

Among the methods for categorical data clustering, two are particularly relevant to our approach: CUBT [8] and DV [37]. The 
former employs decision trees, while the latter utilizes hypothesis testing techniques; yet, neither combines these two approaches. 
In detail, DV sequentially extracts statistically significant clusters by initially conducting a significance test to determine if a cluster 
center reflects a local pattern. It then determines an appropriate radius for identifying the objects that are assigned to that cluster 
center. Obviously, DV is still a traditional non-interpretable clustering method, which cannot provide an interpretable clustering 
3

result in terms of decision trees.
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2.3. Clusterability evaluation methods

Despite the clear objective of clustering algorithms, several fundamental research issues in cluster analysis remain overlooked. In 
particular, for a given data set, is it truly meaningful to perform cluster analysis? If no clustering structure exists within the data set, 
then it is impossible to obtain meaningful clusters no matter which clustering algorithms are employed.

Clusterability evaluation methods [38] are designed to assess whether a data set exhibits a clustering structure, typically serving 
as a preliminary step before applying clustering algorithms. If the data set is found to lack such a structure, being indistinguishable 
from uniform data or random data, any clustering algorithm would not yield meaningful clusters, thus negating the need for further 
clustering analysis tasks. Likewise, in our method, this aim justifies the branching of nodes during tree growth, with each splitting 
being controlled and allowed only when the existence of a clustering structure is confirmed.

Several clusterability evaluation methods for numerical data have been proposed [39,40], with the most commonly used methods 
involving hypothesis testing, often setting the null hypothesis that the data are generated from a single multivariate Gaussian dis-
tribution. However, this approach assumes that the data are continuous and is, therefore, not applicable to categorical data. Hence, 
designing clusterability evaluation methods for categorical data remains an open problem.

3. Methods

3.1. Preliminaries

Consider a categorical data set 𝐷𝑆 = {𝑂1, ⋯ , 𝑂𝑁} of 𝑁 objects in which each object is characterized by 𝑀 attributes. For the 
𝑖-th object 𝑂𝑖, its value on the 𝑚-th attribute can be one of 𝑄𝑚 categories in the set 𝐴𝑚 = {𝐴𝑚

1 , ⋯ , 𝐴𝑚
𝑄𝑚

}. The aim of interpretable 
categorical data clustering is to partition 𝐷𝑆 into different clusters, where each cluster is described by a precise and understandable 
rule.

In the context of the binary decision tree model, the data set 𝐷𝑆 is recursively divided into two subsets during the tree growth 
stage. The final 𝑘 leaf nodes correspond to 𝑘 clusters {𝐷𝑆1, ⋯ , 𝐷𝑆𝑘}. For the 𝑏-th branch node 𝑅𝑏 (in depth-first order, with the 
root node as 𝑏 = 1), it encompasses two types of information: the data set 𝐷𝑆(𝑅𝑏) within the current node, and a split point  (𝑅𝑏), 
where any category 𝐴𝑚

𝑞 can be considered as the candidate one, with  (𝑅𝑏) = 𝐴𝑚
𝑞 . The set of objects 𝐷𝑆(𝑅𝑏) in the branch node 𝑅𝑏

can be divided into two subgroups: 𝐷𝑆
(𝑅𝑏)
1 in the left child node (Group 1) and 𝐷𝑆

(𝑅𝑏)
2 in the right child node (Group 2). Specifically, 

𝐷𝑆
(𝑅𝑏)
1 is composed of objects whose attribute values that match the category specified by  (𝑅𝑏), whereas 𝐷𝑆

(𝑅𝑏)
2 does not.

To construct the interpretable clustering tree, branch nodes are sequentially split until they are deemed to be leaf nodes. For 
each possible split at the 𝑏-th branch node 𝑅𝑏, we derive a 𝑝-value to assess whether the two groups it induces demonstrate a 
statistically significant difference, denoted as 𝑝𝑣𝑎𝑙(𝐷𝑆

(𝑅𝑏)
1 , 𝐷𝑆

(𝑅𝑏)
2 ). Suppose the split  (𝑅𝑏) = 𝐴𝑚

𝑞 can yield the smallest 𝑝-value 
among all candidate splits, it will be used to split the 𝑏-th branch node if the 𝑝-value is less than the significance level.

3.2. Overview of SigDT

SigDT constructs a significance-based decision tree for clustering categorical data, where each branch node is automatically created 
and divided throughout a streamlined and greedy process. Our approach aims to identify truly optimal splits for effective tree growth, 
synonymous with the clustering process itself. The central idea is that not all possible splits in a given data set (or its subsets) are 
meaningful. For a clusterable data set, we aim at identifying the best split that significantly deviates from random splitting. For a data 
set that is inherently unclusterable, any attempt to split it becomes futile. That is, the inclusion of branch nodes during tree growth 
for such unclusterable data sets is unexplainable, even when an interpretable model is used.

As depicted in Fig. 1, SigDT accepts any categorical data set as input in step (a), consistently selecting the best split from all 
candidate splits based on the smallest 𝑝-value in step (c). The significance-based splitting criteria are utilized throughout steps (b) 
and (d), covering the phases before and after the selection of the best split. From step (a) to (b), all necessary information is directly 
extracted from the input data set, and upon applying a split, the data set is divided into two groups, resulting in two sets of frequency 
counts for each category. The 𝑝-value of a given split is calculated by assessing these counts, determining whether two groups exhibit 
statistical differences across a sufficient number of categories. When the best split is obtained in step (d), its 𝑝-value is compared with 
a dynamically adjusted significance level. If the 𝑝-value of the best split falls below this threshold, the split is deemed significant and 
used to form a branch node. Conversely, if the 𝑝-value is larger than the threshold, the current node will not be further divided and 
it is instead treated as a leaf node. Priority is given to the left child node of any branch node, which then serves as the new input 
data set for recursion back to step (a). This process continues until a leaf node is reached. Notably, if no statistically significant split 
exists for the root node, the data set is considered unclusterable.

3.3. Significance-based splitting criteria

To derive the 𝑝-value for each candidate split  (𝑅𝑏), the assessment of differences between 𝐷𝑆
(𝑅𝑏)
1 and 𝐷𝑆

(𝑅𝑏)
2 can be formulated 

as a multivariate two-sample testing problem. The null hypothesis is that objects in these two groups are drawn from the same 
population, suggesting they should not be split. In contrast, the alternative hypothesis posits that the two groups are sufficiently 
4

heterogeneous to warrant division.
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Fig. 1. Illustration of the SigDT framework: (a) Two toy example categorical data sets, each comprising 12 objects and 4 attributes {A, B, C, D}, are used for illustration 
purpose. (b) For each candidate split point in a data set, we calculate the corresponding 𝑝-value. For instance, the split point 𝐴 = 𝐴1 divides the data set DS into 
two groups, with the final 𝑝-value determined by considering the 𝑝-values from testing frequency differences across all categories. (c) At this stage, the best split is 
selected based on the smallest 𝑝-value. (d) This step verifies whether the 𝑝-value of the best split falls below a predetermined threshold; if so, the current branch node 
𝑅𝑏 is created. It shows that 𝑅1 has been included for DS. In contrast, DS (random) is determined to be unclusterable since all candidate splits cannot yield statistically 
significant partitions at the root node. Subsequently, the left child node of 𝑅1 is given priority for recursion, assessing the potential inclusion of 𝑅2 by starting again 
from step (a) with DS1 as the input.

Two-sample testing approaches applied to multivariate data can be classified as either parametric methods or nonparametric 
methods. Parametric methods require strong assumptions, such as specific knowledge about the underlying distribution of data. 
Among nonparametric methods, the commonly employed technique for multivariate data [41] involves first constructing a similarity 
graph for objects and then generating a minimum spanning tree (MST). However, in our context, such graph-based test has notable 
drawbacks: (1) The construction of similarity graph and the generation of MST may incur a quadratic time cost with respect to the 
number of objects. (2) The Euclidean distance adopted by existing graph-based tests is inapplicable for categorical data. Furthermore, 
using such distances to differentiate objects can be ineffective in high-dimensional scenarios, especially when the data set contains a 
relatively small number of objects.

Based on above observations, we present a new method for tackling the multivariate two-sample test issue for categorical data, 
which can achieve a linear time complexity by aggregating all necessary counts to calculate the test statistic through a single traversal 
of the data set.

3.3.1. Test statistic and 𝑝-value calculation

Considering the discrete nature of categorical data, the two-sample testing problem can be viewed as a multiple testing issue. 
Specifically, for each category 𝐴𝑚

𝑞 (1 ≤𝑚 ≤𝑀, 1 ≤ 𝑞 ≤𝑄𝑚), the individual null hypothesis posits that its occurrence probabilities [42]

for the two groups produced by the split point  (𝑅𝑏) are identical:

𝐻(𝑅𝑏)

0𝑚𝑞 ∶ 𝑝1(𝐴𝑚
𝑞 ) = 𝑝2(𝐴𝑚

𝑞 ) = 𝑝(𝐴𝑚
𝑞 ) , (1)

and this is contrasted against the alternative hypothesis:

𝐻(𝑅𝑏)

1𝑚𝑞 ∶ 𝑝1(𝐴𝑚
𝑞 ) ≠ 𝑝2(𝐴𝑚

𝑞 ) , (2)

where 𝑝1 and 𝑝2 are the population success probabilities for group 1 and group 2, respectively, with the common probability 𝑝 being 
unspecified.

It is natural to treat the two groups as two independent sequences of Bernoulli trials: one sequence consisting of 𝑛1 trials with 
a success rate of 𝑝1, and another sequence consisting of 𝑛2 trials with a success rate of 𝑝2 . Given the observed frequency counts �̂�1
and �̂�2 (which are estimates of 𝑝1 and 𝑝2, respectively) in the data,1 the frequency difference FD = �̂�1 − �̂�2 serves as the unbiased 
estimator for 𝑝1 − 𝑝2. Thus, the mean of the sampling distribution of FD is equal to that of 𝑝1 − 𝑝2, and the standard deviation (SD) 
of the sampling distribution of FD can be estimated with sample variances as [42]:

1 For example, as illustrated in Fig. 1(b) for the ‘C1 ’ category, within group 1 there are 𝑛1 = 6 trials with 4 successes, yielding �̂�1 = 4∕6. With no occurrences in 
5

group 2 (�̂�2 = 0), the frequency difference is FD = 4∕6 − 0 = 4∕6.
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𝑆𝐷(�̂�1 − �̂�2) =
√
𝑣𝑎𝑟(�̂�1 − �̂�2) =

√
𝑣𝑎𝑟(�̂�1) + 𝑣𝑎𝑟(�̂�2)

=

√
�̂�1(1 − �̂�1)

𝑛1
+

�̂�2(1 − �̂�2)
𝑛2

.
(3)

Given the null hypothesis that 𝑝1 = 𝑝2 = 𝑝, we can replace �̂�1, �̂�2 with �̂� to simplify the Equation (3):

𝑆𝐷(�̂�1 − �̂�2) =

√
�̂�(1 − �̂�)

𝑛1
+ �̂�(1 − �̂�)

𝑛2
, (4)

where

�̂� =
total successes in both groups

total trials in both groups
=

𝑛1�̂�1 + 𝑛2�̂�2
𝑛1 + 𝑛2

(5)

is an estimator of the hypothesized common success rate 𝑝 that pools information from the two groups.
The test statistic, represented as the standardized FD, is given by

𝑍𝐹𝐷 =
�̂�1 − �̂�2

𝑆𝐷(�̂�1 − �̂�2)
. (6)

When both 𝑛1 and 𝑛2 are sufficiently large to ensure adequate sample sizes,2 the null distribution of the test statistic 𝑍𝐹𝐷 can be 
approximated by the standard normal distribution, denoted as 𝑍𝐹𝐷 ∼ (0, 1). This allows for the analytical derivation of the 𝑝-value 
for the two-sided test against the 𝐻(𝑅𝑏 )

0𝑚𝑞 as follows:

𝑝-value𝑚𝑞(𝑍𝐹𝐷) = 2 × (1 −Φ(|𝑍𝐹𝐷|)) , (7)

where Φ is the cumulative distribution function of the standard normal distribution, and |𝑍𝐹𝐷| = |𝐹𝐷|
𝑆𝐷

is the absolute value of the 
test statistic. This 𝑝-value quantifies the probability of observing a frequency difference as extreme as, or more extreme than, what is 
observed under the null hypothesis that the two groups have equal occurrence probabilities for 𝐴𝑚

𝑞 .

Now, considering the total number of categories, |𝐐| =∑𝑀
𝑚=1𝑄𝑚, in the data, we will derive the final 𝑝-value for a specific  (𝑅𝑏), 

which encompasses |𝐐| individual hypotheses. The global null hypothesis is expressed as:

𝐻(𝑅𝑏)

0 ∶
⋂

1≤𝑚≤𝑀,1≤𝑞≤𝑄𝑚

𝐻(𝑅𝑏)

0𝑚𝑞 , (8)

and this is contrasted against the global alternative hypothesis:

𝐻(𝑅𝑏)

1 ∶
⋃

1≤𝑚≤𝑀,1≤𝑞≤𝑄𝑚

𝐻(𝑅𝑏)

1𝑚𝑞 , (9)

where the global alternative hypothesis contends that at least one of the null hypotheses, 𝐻(𝑅𝑏 )

0𝑚𝑞 , is false. This hypothesis evaluates 
the collective evidence across all categories to determine whether the candidate split  (𝑅𝑏 ) has resulted in two groups exhibiting 
statistically significant frequency differences. The decision to accept 𝐻(𝑅𝑏 )

1 is based on the aggregated results from the individual 
𝑝-values of |𝐐| independent tests.

To combine the evidence from all individual tests, we utilize a meta-analysis technique, specifically the Binomial test [43], to 
compute the final 𝑝-value against 𝐻(𝑅𝑏 )

0 . This is achieved by aggregating multiple 𝑝-values obtained via Equation (7) to form a new 
test statistic as follows:

𝑟 =
𝑀∑
𝑚=1

𝑄𝑚∑
𝑞=1

𝛿(𝑝-value𝑚𝑞, 𝛼) , (10)

where

𝛿(𝑝-value𝑚𝑞, 𝛼) =

{
0 if 𝑝-value𝑚𝑞 > 𝛼

1 if 𝑝-value𝑚𝑞 ≤ 𝛼
(11)

is an indicator function for each 𝑝-value according to the threshold 𝛼. Under 𝐻(𝑅𝑏)

0 that all |𝐐| null hypotheses hold, 𝑟, the number of 
tests that lead to rejection at the 𝛼 level, follows a Binomial distribution representing its overall rejection probability. The cumulative 
distribution function of the Binomial distribution, which accounts for more extreme cases than 𝑟, is then summed to derive the final 
𝑝-value for the candidate split  (𝑅𝑏) as follows:

2 In our approach, considering the small sample sizes inevitably encountered in practical scenarios, we set a threshold of more than 5 objects per group for further 
6

testing. This mirrors common practices in categorical data analysis, where it is typically recommended that expected counts in contingency tables exceed 5.
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Fig. 2. (a) A Loan data set, comprising 24 records of applicants, each containing 6 attributes (‘Sex’, ‘Age’, ‘Income’, ‘Credit’, ‘Owner’, ‘Term’). The records can be 
divided into 3 status clusters (‘Approved’, ‘Pending’, ‘Unapproved’) based on the applicant’s information. (b) For a given selected split point (e.g., ‘Credit = Good’), 
the Loan data set is divided into two groups based on whether samples contain the split point or not. We calculated the 𝑝-value of FD on each category (e.g., ‘Term = 
Long’) according to Equations (4)∼(7). Then, all those 𝑝-values are combined into a single 𝑝-value according to Equations (10)∼(12). (c) The best splits on the first 
and second branches are ‘Credit = Good’ and ‘Income = High’, each with the smallest 𝑝-value among all candidate splits. (d) The final decision tree for the Loan data 
set is constructed accordingly. According to the adjusted significance level in Equation (13), no further significant splits can be produced at any leaf node.

𝑝-value( (𝑅𝑏)) =
∑|𝐐|

ℎ=𝑟

(|𝐐|
ℎ

)
𝛼ℎ (1 − 𝛼)|𝐐|−ℎ , (12)

which is the probability of obtaining at least 𝑟 rejections among |𝐐| null hypotheses. Equation (12) combines all testing information 
among every categorical variable, providing a comprehensive assessment solution to |𝐐| two-sample testing problems.

3.3.2. Multiple testing correction

Given that an optimal split  (𝑅𝑏) =𝐴𝑚
𝑞 is selected at the 𝑏-th branch node, the statistical significance of the resulting two groups is 

determined by comparing its 𝑝-value to a specified significance level. In scenarios involving only a single hypothesis test, the signifi-
cance level 𝛼 is typically set at 0.01. This level tolerates the possibility that up to 1% of more extreme outcomes might occur purely 
by chance. However, when handling multiple hypotheses (𝑇 tests), the risk of wrongly rejecting one or more true null hypotheses 
(Type I errors) increases as 𝑇 grows. The probability of making at least one Type I error, i.e., the Family-Wise Error Rate (FWER), 
across 𝑇 independent tests is calculated as FWER = 1 − (1 − 𝛼)𝑇 . For instance, with 𝑇 = 69 and 𝛼 = 0.01, this FWER reaches 50%. 
Therefore, we must conduct a multiple-comparison correction in order to control the Type I error.

Specifically, we employ the Bonferroni correction method [44] to control the FWER using an adjusted significance level 𝛼∗ = 𝛼

𝑇
. 

This ensures that FWER = 1 − (1 − 𝛼∗)𝑇 ≤ 𝛼. This adjusted level is used to compare against the 𝑝-value to determine the statistical 
significance of the partition generated by  (𝑅𝑏) = 𝐴𝑚

𝑞 at the current 𝑏-th node. To implement this correction, we need to count the 
total number of multiple comparisons, 𝑇 , which corresponds to the number of null hypotheses 𝐻(𝑅𝑏 )

0 tested from the root node to 
the current node under a fixed tree structure. Each node follows sequentially from previously added branch nodes. When testing the 
𝑏-th node, it includes the 𝑏 − 1 previously added optimal branch nodes and the current node itself, making a total of 𝑏 nodes under 
consideration. To form each optimal node, it involves testing |𝐐| candidate splits (|𝐐| null hypotheses). Therefore, with 𝑇 calculated 
in the aforementioned manner, the dynamically adjusted significance level 𝛼∗ to validate  (𝑅𝑏) =𝐴𝑚

𝑞 is computed as follows:

𝛼∗(𝑅𝑏) =
𝛼

𝑇
= 𝛼|𝐐|𝑏 . (13)

3.4. An illustration on example data set

To elaborate on how SigDT works in practice, we use an example data set from the field of financial management to explain the 
clustering tree construction procedure.

The primary business of the bank is lending. In the vast amount of loan applicants, managers need to determine whether to 
approve a loan for each applicant. Here, we use a small but comprehensive Loan data set, as shown in Fig. 2(a), to demonstrate the 
clustering process of SigDT and its final interpretable results.

Besides the detailed calculations displayed in Fig. 2(b), we will show that the clustering process of SigDT is transparent. This 
7

transparency mainly stems from the fact that all candidate splits at each branch node are thoroughly evaluated using 𝑝-values, as 
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Table 2

Classification of the nine competing methods. Default parameter settings are utilized for 
these methods unless otherwise noted. Specifically, for CDCDR, options that can enhance 
the performance suggested by the authors are employed, including Spectral Embedding as 
the ‘Graph Embedding Method’ and the joint operation as the ‘Integration Operation’.

Non-interpretable
Hypothesis testing DV

Classic 𝑘-mode [30]; Entropy-based method [34]
State-of-the-art CDE [35]; CDCDR [36]

Interpretable
Pre-modeling CUBT

Post-modeling IMM [26]; RDM [27]; SHA [12]

listed in Fig. 2(c), which are statistically interpretable values that range from 0 to 1. Specifically, from the list, we can observe that 
some candidate splits have relatively large 𝑝-values at all branch nodes. For instance, when using ‘Sex’ as a decision attribute (whether 
the split point is male or female), the 𝑝-value equals 1.

Ultimately, as shown in Fig. 2(d), we utilized two best splits with minimal 𝑝-values at each branch to obtain three clusters. Each 
cluster can be explained by an easily understandable decision rule. Specifically, applicants without good credit are unapproved. 
Among those with good credit, applicants with high income are directly approved. The remaining applicants with good credit but 
without high income are conservatively placed into the ‘Pending’ cluster for further manual review.

4. Results

In this section, we perform a detailed evaluation of our SigDT method on eighteen real-world categorical data sets, examining its 
performance in three aspects: clusterability prediction (Section 4.2), clustering quality (Section 4.3), and explainability (Section 4.4). 
The primary aim of our experiments is to empirically validate the effectiveness of SigDT compared to existing relevant clustering al-
gorithms. Firstly, two most closely related categorical data clustering methods in the performance comparison are briefly summarized 
as follows:

• DV [37]: This algorithm,3 which employs hypothesis testing, iteratively extracts statistically significant cluster centers until no 
more significant centers can be found, thus automatically determining the number of clusters. If no statistically significant center 
is identified during the initial extraction and no clusters are output, the data set is deemed unclusterable.

• CUBT [8]: This method begins by constructing a maximal growth tree, denoted as CUBTmax. It then applies two different pruning 
measures after the same joint processing stage, resulting in two algorithmic variants: CUBTHam, which utilizes Hamming distance, 
and CUBTMI, which employs mutual information. We adhere to the default parameters provided in the original implementation 
by the authors,4 which include trivial thresholds to control the tree growth that a maximum tree depth lp=7, a minimum number 
of objects in each leaf node minsize=10, and a minimum number of objects required to split a branch node minsplit=20.5

In addition, other seven interpretable and non-interpretable clustering algorithms are included in the experiments as well. All nine 
competing methods are classified into five sub-types, as shown in Table 2. The recently proposed interpretable clustering methods 
predominantly fall into the post-modeling category, designed primarily for numerical data. To enable comparison, we employ one-hot 
encoding to convert each categorical object into a numerical vector, allowing methods such as IMM,6 RDM, and SHA7 to be applied 
to the categorical data sets.

To compare with existing algorithms with respect to clustering quality (Section 4.3) and explainability (Section 4.4), SigDT 
consistently retains an initial optimal split, even with data deemed unclusterable. Unlike SigDT, DV, and CUBT, other methods do not 
consistently produce the same clustering result in each run. Therefore, to ensure a fair evaluation, we perform 50 independent runs 
for these algorithms on each data set and use the average result in the comparison. Additionally, these methods require specifying the 
number of clusters, 𝐾 , which we set according to the ground-truth number provided for each data set. All experiments are conducted 
on an Intel i7-10700F @ 2.90 GHz personal computer with 16GB RAM.

4.1. Data sets and performance metrics

Table 3 presents the characteristics of 18 real-world categorical data sets, sorted by the number of objects in ascending order. 
These data sets, consisting entirely of categorical attributes (including ‘Binary’ or ‘Integer’ types, which are treated as categorical 
attributes after discretization), are publicly available from the UCI Machine Learning Repository.8

3 https://github .com /hetong007 /CategoricalClustering.
4 https://www .i2m .univ -amu .fr /perso /badih .ghattas /cubt .php.
5 In contrast, our method sets a more relaxed criterion to ensure sufficient sample size for testing, requiring at least 6 objects for each candidate leaf node, hence

minsize=6.
6 https://github .com /navefr /ExKMC.
7 https://github .com /lmurtinho /ShallowTree.
8

8 https://archive .ics .uci .edu /datasets ?FeatureTypes =Categorical.

https://github.com/hetong007/CategoricalClustering
https://www.i2m.univ-amu.fr/perso/badih.ghattas/cubt.php
https://github.com/navefr/ExKMC
https://github.com/lmurtinho/ShallowTree
https://archive.ics.uci.edu/datasets?FeatureTypes=Categorical
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Table 3

The characteristics of 18 UCI categorical data sets.

Data set Abbr. 𝑁 𝑀 |𝐐| 𝐾

Lenses Ls 24 4 9 3
Lung Cancer Lc 32 56 159 3
Soybean (Small) So 47 21 58 4
Zoo Zo 101 16 36 7
Promoter Sequences Ps 106 57 228 2
Hayes-Roth Hr 132 4 15 3
Lymphography Ly 148 18 59 4
Heart Disease Hd 303 13 57 5
Solar Flare Sf 323 9 25 6
Primary Tumor Pt 339 17 42 21
Dermatology De 366 33 129 6
House Votes Hv 435 16 48 2
Balance Scale Bs 625 4 20 3
Credit Approval Ca 690 9 45 2
Breast Cancer Bc 699 9 90 2
Mammographic Mass Mm 824 4 18 2
Tic-Tac-Toe Tt 958 9 27 2
Car Evaluation Ce 1728 6 21 4

Table 4

The 𝑝-value of the initial optimal split by SigDT and its clusterability prediction results on ODS and RDS∗ for 18 UCI data sets. 𝑝-values with a gray background 
indicate that data sets are deemed unclusterable by SigDT, while bold values indicate agreement between DV and SigDT that the data sets are unclusterable.

Data set Ls Lc So Zo Ps Hr Ly Hd Sf Pt De Hv Bs Ca Bc Mm Tt Ce

𝛼∗ 0.001 6E-05 0.0002 0.0003 4E-05 0.0007 0.0002 0.0002 0.0004 0.0002 8E-05 0.0002 0.0005 0.0002 0.0001 0.0006 0.0004 0.0005

𝑝-value (ODS) 1 3E-16 2E-44 3E-35 3E-10 0.0096 4E-22 1E-20 1E-28 3E-25 4E-127 1E-45 1 5E-21 1E-118 3E-10 2E-17 1

𝑝-value (RDS∗) 1 0.0225 0.0028 0.0503 0.0086 1 0.0029 0.0196 0.0258 0.0662 0.0020 0.0124 0.0169 0.0104 0.0022 0.0138 0.2377 0.1903

To evaluate the clusterability prediction capability in the absence of prior knowledge about whether a data set is inherently 
clusterable, we adopt a simulation approach by randomly reassigning categories to generate randomized data. It is reasonable to 
assume that completely randomized data is unclusterable. Progressively increasing the number of random reassignments for the 
original data makes the simulated randomness more evident. This simulation procedure serves as a benchmark to assess the capability 
of our method on clusterability prediction.

For evaluating clustering quality, we utilize two widely-used external validation metrics: Purity and F-score. These metrics assess 
the clustering outcomes by comparing the predicted cluster labels with the ground-truth labels. Higher values of these metrics indicate 
superior clustering quality.

For evaluating the explainability of clustering trees, where each leaf node corresponds to an individual cluster, we consider the 
complexity of decision rules from the root node to multiple leaf nodes. To this end, we employ three metrics to gauge the simplicity 
of the tree: the number of leaf nodes (nLeaf), the maximal depth of the tree (maxDepth), and the average depth of the leaf nodes 
(avgDepth). Lower values of these metrics indicate superior explainability, reflecting more intuitive and concise tree-based rules for 
describing cluster formation.

4.2. Simulation analysis on clusterability prediction

To generate a Randomized Data Set (RDS) from any Original Data Set (ODS), we uniformly and independently apply one of two 
strategies to all attributes, thereby changing the ODS into a RDS. Here is the process for the 𝑚-th attribute:

(1) Category Exchange Strategy: Begin by randomly selecting two objects, 𝑂𝑖 and 𝑂𝑗 , from the ODS, where their attribute 
values on the 𝑚-th attribute are exchanged. This operation only affects these two objects on the 𝑚-th attribute, with all other objects’ 
values on this attribute remaining unchanged between the ODS and RDS. This exchange operation is independently repeated for each 
attribute, and a complete cycle of exchanges across all attributes is defined as a single exchange event. Multiple consecutive exchange 
events can be executed to incrementally increase the randomness of the RDS. A RDS subjected to more exchange events is presumed 
to exhibit a higher level of randomness compared to those with fewer exchange events.

(2) Random Permutation Strategy: Begin by generating a random permutation of integers from 1 to 𝑁 (the total number of 
objects in the ODS). This new sequence is used to generate a new order of categories for the 𝑚-th attribute, replacing the original 
order. This permutation operation is independently repeated for each attribute, affecting multiple objects on each attribute. Similar 
to executing the Category Exchange Strategy multiple times, this strategy is designed to produce a completely randomized data set 
(RDS∗), which is assumed to be unclusterable due to the high level of randomness introduced.

Table 4 displays the clusterability prediction results of SigDT, which consistently identifies each RDS∗ as being unclusterable. In 
contrast, DV fails to recognize RDS∗ as unclusterable for five data sets: Zo, Ly, Hd, Pt, and Hv. Regarding the ODS of all 18 UCI data 
9

sets, SigDT predicts most to be clusterable, with exceptions for Ls, Hr, Bs, and Ce, which are also deemed as being unclusterable by 
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Fig. 3. Percentage of unclusterable randomized data sets identified by SigDT among the RDS versions of 18 UCI data sets, with increasing levels of simulated 
randomness. Each ‘Number of Exchange Events’ parameter is independently applied to generate a RDS directly based on the ODS for each simulation.

DV. This demonstrates that SigDT effectively differentiates between the clusterability of ODS and RDS∗, under the assumption that 
UCI data sets are inherently clusterable.

To address the challenge of objectively determining whether a RDS is unclusterable, we track the trend in clusterability predictions 
against increasing levels of randomness in the RDS, as illustrated in Fig. 3. Initially, at ‘Number of Exchange Events’ = 1, where 
each RDS is generated through one exchange operation per attribute of the ODS, SigDT identifies eight data sets as unclusterable, 
corresponding to an identification rate of 44.4% (8 out of 18). As the ‘Number of Exchange Events’ increases, introducing more 
randomness into each RDS, SigDT progressively identifies more of the generated data sets as being unclusterable. Ultimately, after a 
sufficient number of exchange events, SigDT can achieve an identification rate of 100%, signaling that the RDS has attained a state 
of complete randomization.

4.3. Performance comparison on clustering quality

Fig. 4 depicts the clustering quality comparison, where algorithms positioned further towards the upper right corner of the coordi-
nate chart for each data set indicate better performance with respect to Purity and F-score. We consider one algorithm to be superior 
to another if it surpasses in both metrics. The running times, recorded in seconds, are illustrated in Fig. 5. Observations from both 
Fig. 4 and Fig. 5 yield several key experimental conclusions:

(1) Overall performance: SigDT achieves good clustering quality on most data sets while requiring significantly less execution 
time compared to most algorithms. In terms of both Purity and F-score, SigDT is only surpassed by other algorithms on five specific 
data sets: Zo, Ly, Hd, Sf, and Bc, with the number of algorithms proving superior to SigDT on these data sets being 8, 2, 1, 2, and 7, 
respectively. The underperformance on the Zo data set is partly due to the fact that its ground-truth cluster set has two clusters with 
only 5 and 4 objects each, falling below the minimum candidate leaf node size of 6 required by our method during the hypothesis 
testing stage. In terms of Purity, SigDT achieves the best performance on 6 data sets: So, Ps, Hv, Ca, Mm, and Tt. As Purity may be 
sensitive to biases associated with the number of predicted clusters, we place additional emphasis on the performance metrics of the 
F-score. SigDT achieves the best F-score on 9 data sets: Ls, Lc, So, Hr, Pt, De, Bs, Mm, and Ce. Notably, Ls, Bs, and Ce, which are 
deemed unclusterable by SigDT, attain modest F-score values around 0.5. Furthermore, as depicted in Fig. 6(a), SigDT is significantly 
better than three competitors across all data sets. In contrast, the other algorithms (excluding DV) do not exhibit such pronounced 
superiority relative to each other.

(2) Comparison with DV: Although both SigDT and DV employ hypothesis testing procedures, SigDT runs significantly faster, 
typically requiring less than 0.01 seconds for most data sets, in contrast to DV, which requires at least 1 second for the majority of 
data sets. DV may also fail to report clustering results if it cannot identify any statistically significant cluster centers, which limits its 
practical utility. As shown in Fig. 4, DV can provide clustering outcomes for only 7 out of 18 data sets (So, Zo, Ly, Hd, De, Hv, Bc). In 
contrast, our algorithm identifies significant initial splits on most data sets and can even achieve modest clustering quality on those 
data sets deemed being unclusterable. Among the data sets where DV does report clusters, it outperforms SigDT on only Zo and Bc. 
In terms of the number of predicted clusters, DV correctly predicts the ground-truth cluster number on 2 data sets (So and Zo), which 
does not surpass SigDT since our method also predicts the right cluster number on two data sets (So and Mm), as illustrated in Fig. 7.

(3) Comparison with CUBT: Both CUBTHam and CUBTMI are among the most time-consuming competitors and generally yield 
clusters of significantly lower quality than SigDT, as shown in Fig. 6. These versions of CUBT are only superior to SigDT on 2 (Hd, Bc) 
and 4 (Zo, Ly, Sf, Bc) data sets, respectively. Regarding the accuracy on predicting the number of clusters close to the ground-truth 
number 𝐾 , as depicted in Fig. 7, CUBTHam and CUBTMI collectively predict a cluster number that is close to the ground-truth on 9 
data sets, while SigDT can achieve this goal on 11 data sets (Ls, Lc, So, Zo, Ps, Hr, Ly, De, Bs, Ca, Mm). Notably, CUBTMax tends to 
produce more leaf nodes as the number of objects in the data set increases. This trend is visible in Fig. 7, where data sets are arranged 
in an ascending order of the number of objects. Unlike SigDT, CUBTMax does not automatically halt splitting but instead relies on 
trivial conditions that may be sensitive to the scale of the data.

(4) Comparison with non-interpretable clustering algorithms: SigDT does not significantly outperform any specific non-
10

interpretable clustering algorithms, but it excels over all these methods collectively on 2 data sets and achieves superior performance 
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Fig. 4. The clustering quality comparison in terms of both Purity and F-score on 18 UCI data sets. For each data set, the algorithms that can outperform SigDT with 
respect to both Purity and F-score are highlighted with a dashed box.

Fig. 5. Comparison of running times (in seconds) for all algorithms. The three fastest algorithms, IMM, CDCDR, and SigDT, are highlighted in bold and listed in 
ascending order of total execution time across all data sets. These algorithms are significantly faster than the remaining eight algorithms across all data sets, as 
11

confirmed by pairwise comparisons using the one-sided Wilcoxon signed-rank test at the 95% confidence interval.
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Fig. 6. Comparison of SigDT and other competitors in terms of F-score verified by the two-tailed Bonferroni-Dunn test [45] at the 95% confidence interval. In the 
Critical Difference (CD) diagram, each algorithm is positioned according to its average rank across all data sets. Algorithms that are not statistically significantly 
different in performance are connected by a thick line, the length of which represents the CD value. If the distance between two algorithms exceeds this length, the 
difference in their performance is considered statistically significant.

Fig. 7. The number of clusters predicted by SigDT, DV and CUBT. Suppose the ground-truth cluster number is 𝐾 , the region between 𝐾 − 1 and 𝐾 + 1 for each data 
set is colored in pink. If the number of clusters predicted by one algorithm falls into this region, then the corresponding cluster number is marked with a black dot.

over CDE and CDCDR on 4 data sets (Lc, So, Hr, Mm). Conversely, both CDE and CDCDR are superior to SigDT on only 2 data sets 
(Zo, Bc). Moreover, SigDT runs faster than nearly all these algorithms, with the exception of CDCDR. However, CDCDR does not 
significantly outpace SigDT in speed, as confirmed by the one-sided Wilcoxon signed-rank test at the 95% confidence interval.

(5) Comparison with interpretable clustering algorithms: SigDT is competitive with these algorithms in terms of both clus-
tering quality and running efficiency. Particularly, it significantly outperforms RDM in clustering quality among the ten compared 
algorithms, as illustrated in Fig. 6(a), and also runs significantly faster than RDM and SHA. For specific data sets, SigDT achieves 
superior performance over IMM, RDM, and SHA on 6, 8, and 4 data sets, respectively. However, only on the Zo data set do any of 
these algorithms surpass SigDT.

4.4. Performance comparison on explainability

Fig. 8 assesses the explainability of SigDT alongside other interpretable clustering algorithms, including the tree growth algorithm 
CUBTmax and others listed in Fig. 6(b), by comparing metrics such as ‘maxDepth’ and ‘avgDepth’. The comparison on the ‘nLeaf’ 
metric, which represents the number of clusters produced by each algorithm, is included in Fig. 7, where the ‘nLeaf’ values for IMM, 
RDM, and SHA are fixed to be the ground-truth cluster number 𝐾 .

In the comparison of ‘nLeaf’, since the number of clusters is not predetermined for SigDT and CUBT, these algorithms can produce 
any number of leaf nodes. As shown in Fig. 7, SigDT generally produces leaf nodes not exceeding 𝐾 . In contrast, CUBT, even with 
post-hoc processing procedures to trim excess leaf nodes through two different measures, still tends to generate more than 𝐾 leaf 
nodes, especially in data sets with a larger number of objects. Specifically, SigDT produces fewer leaf nodes than 𝐾 on 9 data sets: 
Ls, Lc, Zo, Hr, Hd, Sf, De, Bs, and Ce. Conversely, CUBTmax, which uses a tree growth method with trivial stopping conditions, only 
manages this goal on 4 data sets with the fewest objects. Moreover, CUBTmax produces significantly more leaf nodes than all other 
interpretable algorithms. This is confirmed by the one-sided Wilcoxon signed-rank test at the 95% confidence interval.

In terms of both maxDepth and avgDepth, SigDT significantly achieves a more streamlined tree structure compared to CUBTmax
and its two algorithmic variants. Notably, SHA achieves the second-best conciseness, surpassed only by our SigDT method, which 
aims to form shallow trees by incorporating measures like Weighted Average Depth into its objective function. However, constrained 
by the ground-truth number of clusters and external clustering algorithms, SHA fails to achieve a more streamlined tree structure. 
Even excluding Pt, the data set with the largest number of clusters (𝐾 = 21), the average maxDepth produced by SigDT is still smaller 
12

than that of SHA (2.06 vs. 2.11).
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Fig. 8. The explainability comparison in terms of maxDepth and avgDepth among all interpretable clustering algorithms. The dash lines indicate the means of maxDepth 
and avgDepth across all data sets produced by SigDT and SHA. It is confirmed by the one-sided Wilcoxon signed-rank test at the 95% confidence interval that CUBTmax

and its two algorithmic variants, CUBTHam and CUBTMI, generally exhibit significantly higher maxDepth and avgDepth compared to SigDT.

Table 5

Summary of interpretable clustering methods used in the experiments, categorized by vari-
ous criteria and intersecting with SigDT.

Stage
Interpretable model Optimization approach

Pre-modeling Post-modeling

Tree-based Greedy search SigDT; CUBT IMM; RDM; SHA
PDM DReaM [22]

Non-tree-based
MIO MPC-1 [24]

4.5. Extended performance comparisons

In the above experiments, we compared the performance of SigDT in terms of clustering quality with both classic and advanced 
non-interpretable clustering methods for categorical data. We also assessed clustering explainability against recently proposed in-
terpretable clustering methods that, like ours, use tree-based models. Selecting tree-based interpretable methods allows for a direct 
comparison of explainability by measuring the structural parameters of the clustering trees. However, many advanced interpretable 
clustering methods remain, most of which are designed for numerical data. Due to space limitations, we could not include all of them. 
To broaden the spectrum of advanced interpretable clustering methods for comparison, we selected two representative methods that 
differ from the tree-based approaches used in previous experiments. The differences between the newly added methods and those 
previously compared are illustrated in Table 5, as described in [46], summarizing various criteria. The two selected contrasting ad-
vanced interpretable algorithms are both pre-modeling approaches, ensuring strong counterparts for comparison with SigDT. Detailed 
descriptions of the experiments are provided in Section 4.5.1.

Another extended experiment focuses on testing several interpretable clustering methods alongside ours on more complex and 
challenging data sets, specifically high-dimensional and sparse data, to further evaluate applicability in real-world contexts. We will 
present experimental results only with IMM, RDM, and SHA for several reasons: (1) They are tree-based interpretable clustering 
methods, allowing for a direct comparison of explainability, which better highlights the strengths and weaknesses of SigDT. (2) They 
13

are time-efficient and can complete experiments on this type of data within a relatively acceptable total runtime, which is crucial in 
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Table 6

Performance comparison of non-tree-based interpretable clustering methods in terms of clustering quality and 
time efficiency. The compared methods are designed for numerical data as input, where categorical data is 
transformed using one-hot encoding. Note that “ / ” indicates that results on some data sets could not be gen-
erated by MPC-1 due to Multiple Integer Programming model optimizer limitations in its source code, imposed 
by the IBM® Decision Optimization CPLEX® PyPI version (https://pypi .org /project /docplex), exceeding the 
problem size limits (1000 variables, 1000 constraints).

Purity F-score Running Times

SigDT DReaM MPC-1 SigDT DReaM MPC-1 SigDT DReaM MPC-1
Ls 0.625 0.646 0.917 0.498 0.404 0.276 0.001 1.636 18.864
Lc 0.563 0.506 0.438 0.513 0.399 0.481 0.017 9.229 315.463
So 1 1 1 1 1 1 0.006 5.288 71.182
Zo 0.802 0.897 0.921 0.685 0.776 0.902 0.007 8.756 51.124
Ps 0.802 0.642 0.840 0.584 0.579 0.560 0.066 26.292 1025.487
Hr 0.485 0.512 0.470 0.436 0.402 0.149 0.001 2.160 28.331
Ly 0.723 0.734 0.568 0.475 0.577 0.654 0.012 11.274 101.896
Hd 0.551 0.573 0.545 0.472 0.441 0.523 0.008 27.219 33.869
Sf 0.495 0.527 0.567 0.418 0.403 0.344 0.004 10.420 21.208
Pt 0.310 0.433 0.248 0.228 0.179 0.193 0.010 76.041 26.778
De 0.833 0.880 / 0.857 0.832 / 0.046 102.582 /
Hv 0.956 0.864 0.848 0.569 0.771 0.748 0.016 12.104 33.185
Bs 0.590 0.546 / 0.557 0.445 / 0.002 7.841 /
Ca 0.855 0.555 / 0.635 0.612 / 0.007 19.520 /
Bc 0.911 0.970 / 0.719 0.946 / 0.021 47.448 /
Mm 0.824 0.625 / 0.717 0.618 / 0.002 6.076 /
Tt 0.721 0.653 / 0.419 0.529 / 0.009 11.653 /
Ce 0.700 0.700 / 0.552 0.358 / 0.003 26.430 /

Avg 0.708 0.681 0.669 0.574 0.571 0.530 0.013 22.887 157.035

practical scenarios, unlike CUBT, DReaM, and MPC-1, which are more time-consuming. The specific experimental details are provided 
in Section 4.5.2.

4.5.1. Comparison with non-tree-based interpretable clustering methods

The two selected advanced interpretable clustering methods utilize non-tree-based interpretable models that form geometric 
boundaries to enclose each cluster. This enables the clustering results to be interpretable through understandable closed regions. 
Specifically, DReaM [22] identifies clusters using hyper-rectangles, while the MPC methods [24] use polytopes. The latter includes 
two variants, MPC-1 and MPC-2 (details and parameter settings are provided in the original paper). We adopted approaches that 
ensure the data is partitioned along feature axes. In other words, the boundaries of DReaM and the chosen MPC-1 are axis-parallel, 
which is commonly considered to improve interpretability compared to non-axis-parallel methods, such as those based on prototypes 
described in [46]. Given that both methods are relatively time-consuming, we ran each independently 10 times and reported the 
average results across 18 UCI data sets, as shown in Table 6.

Based on both prior analyses and the experimental results presented here, we conclude that our method, SigDT, demonstrates 
considerable strength in scenarios where the number of clusters is not provided as input. SigDT excels in finding high-quality clustering 
structures without requiring a predefined 𝐾 . In the absence of ground-truth 𝐾 , identifying meaningful clusters becomes much more 
challenging, as evidenced by the CUBT methods, which exhibit the most inferior clustering accuracy among the comparisons. While 
DReaM and MPC-1 achieve satisfactory clustering quality, they depend on the provision of 𝐾 as input. Specifically, DReaM directly 
specifies the number of clusters, while MPC-1 9 initializes with a range of 𝐾 values. The clustering performance of MPC-1 declines 
compared to DReaM when 𝐾 is not fixed as strong supervisory information. Furthermore, both methods introduce computational 
overhead due to the complexity of the optimization problems they solve, even with the use of commercial solvers.

4.5.2. Comparison on high-dimensional and sparse categorical data

We selected five benchmark DNA barcoding data sets sourced from [47] for this examination. Each data set consists of biological 
sequence samples aligned to the same length, allowing them to be treated as categorical data sets. The characteristics of these data 
sets are listed in Table 7, and they are typically high-dimensional and sparse, with large 𝑀 and small |𝐐|

𝑁𝑀
. Given the substantially 

higher computational costs these data sets impose on various algorithms, we ran each comparison method independently 5 times on 
each data set and reported the average results, as shown in Table 8.

Based on the comprehensive comparison conducted on these data sets, we conclude that SigDT exhibits limitations and weaknesses 
in addressing the challenges posed by the data characteristics. One issue lies in the sharp increase in the number of hypothesis tests 
(|𝐐|), where alternative hypotheses in Equation (9) become more susceptible to noise, resulting in more false positives, i.e., extremely 
small 𝑝-values calculated in Equation (12). This complicates the distinction between the two groups formed during the selection of 

9 Following the original configuration of FCPS Experiment.ipynb from https://github .com /conlaw /PolytopeClustering, we implemented their code to output 
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the final result with the optimal silhouette score for each data set.

https://pypi.org/project/docplex
https://github.com/conlaw/PolytopeClustering
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Table 7

The characteristics of five benchmark DNA barcoding data sets. For each categorical data set, 
𝑁 represents the number of barcodes in the data set, 𝐾 represents the number of species, and|𝐐|
𝑁𝑀

measures the sparsity of the categorical data by counting the number of unique categories 
distributed across the 𝑁 ×𝑀 data matrix.

Data set Abbr. 𝑁 𝑀 |𝐐| 𝐾
|𝐐|
𝑁𝑀

Área de Conservación Guanacaste ACG 4267 663 2716 573 0.10%
Bats of Guyana Bats 840 659 1504 96 0.27%
Birds of North America Birds 2589 990 3321 656 0.13%
Fish of Australia Fish 754 901 2115 211 0.31%
Hesperiidae / 2185 664 1995 364 0.14%

Table 8

Performance comparison of tree-based interpretable clustering methods on benchmark DNA barcoding data 
sets in terms of clustering quality, time efficiency and explainability. Method with its performance measure 
significantly inferior to that of SigDT is highlighted in red, as confirmed by pairwise comparisons using the 
one-sided Wilcoxon signed-rank test at the 95% confidence interval.

Measure Method ACG Bats Birds Fish Hesperiidae Avg

SigDT 0.262 0.604 0.134 0.267 0.337 0.321
IMM 0.813 0.964 0.790 0.918 0.825 0.862

RDM 0.699 0.900 0.641 0.869 0.719 0.766
Purity

SHA 0.811 0.959 0.794 0.880 0.821 0.853

SigDT 0.232 0.634 0.110 0.223 0.325 0.305
IMM 0.717 0.871 0.676 0.803 0.720 0.757

RDM 0.631 0.774 0.534 0.719 0.647 0.661
F-score

SHA 0.724 0.864 0.688 0.768 0.718 0.752

SigDT 474.114 20.671 257.711 34.751 103.141 178.078
IMM 50.127 1.154 54.532 3.025 18.088 25.385

RDM 1654.183 33.292 1895.702 88.257 380.541 810.395
Running Times

SHA 537.347 8.146 639.287 21.268 103.654 261.940

SigDT 106 37 52 41 64 60

IMM 574 96 657 211 366 381
RDM 573 96 656 211 364 380

nLeaf

SHA 571 91 624 184 361 366

SigDT 46 8 12 10 19 19
IMM 173 32 180 37 159 116
RDM 46 17 48 20 46 35

maxDepth

SHA 14 9 13 10 13 12

SigDT 17 6 7 7 9 9

IMM 84 17 91 19 87 60
RDM 26 10 28 12 24 20

avgDepth

SHA 10 7 10 8 9 9

the optimal branch node, and as tree depth increases, leads to numerous erroneous splits, ultimately resulting in inaccurate clustering 
outcomes. Additionally, controlling the significance threshold becomes more challenging. Without stringent control, as outlined in 
Equation (13), the method can generate a large number of leaf nodes, contradicting our goal of forming clusters with a concise 
tree structure. Although the clustering quality may be predictably suboptimal, as shown in Table 8, despite some inherent issues 
with the use of 𝑝-values [48], our designed dynamic significance thresholds still produce relatively shallow trees for these data sets, 
comparable to SHA. Specifically, our method significantly outperforms 3, 1, and 2 of the comparison algorithms in terms of nLeaf, 
maxDepth, and avgDepth, respectively. Moreover, the runtime of our method is the second fastest, following IMM, which leverages 
CPython (a faster language than the Matlab used in our implementation).

Furthermore, SHA performs well across nearly all measures. This can be partly attributed to its incorporation of explainability (tree 
structure parameters) into the optimization objective, resulting in a more balanced tree. Although SHA produces more leaves than 
SigDT, it achieves a smaller maxDepth and a nearly identical avgDepth. This suggests that, despite our goal of choosing significance-
based split, our method may have overlooked some important branch nodes, leading to an imbalanced tree.

4.6. Summary

To consolidate the experimental results, we summarize the pros and cons of SigDT based on its performance across various data 
sets and in comparison with other methods:

• Strengths: (1) It offers interpretability in the clustering process, making the clustering algorithm more transparent. (2) It has the 
15

ability to predict clusterability, refusing to conduct cluster analysis on data sets without inherent clustering structure. (3) The 
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clustering result can be represented using a concise decision tree structure, enhancing human understanding of the clustering 
outcomes.

• Weaknesses: (1) It cannot perfectly predict the number of clusters, which may pose issues in practical applications when it is 
critical to know the cluster number exactly. (2) Its runtime is still time-consuming on large data sets, which could hinder its 
deployment in practice. (3) It may be less effective for high-dimensional or sparse categorical data, as it may omit key splits 
needed to detect clustering structures at finer granularity, leading to inaccurate results.

5. Conclusions

In this paper, we introduced SigDT, a novel decision tree-based method designed to enhance interpretability in clustering cate-
gorical data. SigDT offers several features that facilitate human understanding of the clustering process: (1) It operates without the 
need for hard-to-specify parameters or reliance on external algorithms, enabling automatic and controllable decisions. This approach 
removes external interference, allowing users to focus entirely on the clustering process. (2) It produces a concise clustering decision 
tree with fewer rules. (3) It assesses whether a data set inherently possesses a clustering structure, helping to prevent the generation 
of meaningless and perplexing clustering results. Experiments on real data sets empirically demonstrate that our method is competi-
tive with advanced categorical data clustering algorithms in terms of clustering quality and running efficiency. Crucially, SigDT can 
achieve a more streamlined tree structure compared to existing optimization-based interpretable clustering algorithms when applied 
to categorical data.

Our approach faces challenges in enhancing its flexibility: (1) When users wish to specify a custom number of clusters instead 
of relying on the automatically determined cluster number, it necessitates recalibrating significance thresholds to control splits. 
(2) Although the smallest 𝑝-value typically determines the optimal split, considering other splits with small 𝑝-values might also be 
effective and could influence the global tree structure. We will explore alternative splits that are also statistically significant to check 
if better clustering results may be obtained.

Finally, while SigDT currently relies on 𝑝-values to assess the statistical significance of splits within our decision tree clustering 
process, we acknowledge the limitations associated with their use. These limitations, including sensitivity to sample size and potential 
misinterpretation, have been well-documented in the statistical literature [48]. Despite their computational efficiency and applica-
bility in handling complex data sets in real-world contexts, 𝑝-values have generated ongoing debates regarding their robustness. In 
future work, we plan to explore alternative statistical measures, such as effect sizes, Bayesian approaches like Bayes factors [49], or 
information criteria like AIC and BIC. These alternatives are expected to improve the robustness and reliability of our method by 
addressing the inherent challenges associated with using 𝑝-values. By integrating these methods, we aim not only to mitigate the 
limitations of 𝑝-values but also to improve the overall effectiveness of our significance-based framework for interpretable clustering 
problems.
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