
Engineering Applications of Artiϧcial Intelligence 160 (2025) 111861 

A
0

 

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai  

Research paper

Statistical significance of cluster membership for categorical data
Lianyu Hu a , Zerun Li b, Junjie Dong b , Mudi Jiang b , Zengyou He b ,∗

a College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
b School of Software, Dalian University of Technology, Dalian, China

A R T I C L E  I N F O

Keywords:
Categorical data
Cluster membership
Fisher’s exact test
Meta-analysis
Statistical interpretation
Cluster validation

 A B S T R A C T

Clustering algorithms partition data samples into distinct groups in an unsupervised manner, which requires 
subsequent validation. In post-hoc cluster analysis, clustering quality is typically evaluated at the cluster level, 
with a focus on metrics such as intra- and inter-cluster distances. However, evaluation at the sample level 
(i.e., cluster membership) is often overlooked. To assess whether a given sample is correctly assigned to its 
respective cluster, it is crucial to consider the inevitable effects of random assignments or noisy samples. 
Unfortunately, the statistical cluster membership evaluation is a largely underexplored problem, with almost no 
previous research efforts in this direction. In this paper, we propose a new method for assessing the statistical 
significance of cluster membership for categorical data. Under the null hypothesis that there is no association 
between one sample and a cluster, we can employ the Fisher’s exact test to derive a 𝑝-value with respect 
to each attribute. By combining 𝑝-values from all attributes via meta-analysis, we can obtain a consensus 
𝑝-value to quantify the cluster membership, i.e., if the sample is statistically associated with the target cluster. 
To show the benefit of such a cluster membership evaluation technique, we deploy our algorithm to several 
applications, ranging from cluster validation to cluster refinement and enhancement. Experimental results on 
real categorical data sets demonstrate the rationale and effectiveness of our method, including its potential to 
improve the overall clustering accuracy of both classical and state-of-the-art clustering algorithms.
1. Introduction

Clustering, a fundamental technique in machine learning for ex-
ploratory data analysis, is widely utilized in diverse fields such as 
biomedical research, social sciences, economics, etc (Ezugwu et al., 
2022). Its primary aim is to organize heterogeneous data into mean-
ingful groups. To achieve this, various clustering algorithms have 
been developed for both numerical data (Jain, 2010) and categorical 
data (Dinh et al., 2025). These algorithms aim to assign samples to 
distinct clusters, typically by optimizing objective functions such as 
intra-cluster compactness and inter-cluster separation.

The most commonly used 𝑘-means-type clustering algorithms em-
ploy iterative optimization to find a local optimum. Many other clus-
tering algorithms follow a similar approach and may fail to achieve 
a global optimum. These limitations can result in some samples being 
assigned to suboptimal clusters and may inevitably introduce uncon-
trolled factors into the reported clustering results. This is particularly 
problematic when clustering algorithms are applied to random data 
with insufficient preprocessing, yet the algorithm still optimizes to 
report a set of ‘‘distinct’’ clusters. Given the unsupervised nature of clus-
tering algorithms, it is crucial to assess whether the assignment of each 
individual sample to its cluster is correct. This involves determining 
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if one sample truly belongs to a particular cluster, i.e., its authentic 
cluster membership.

To evaluate the quality of clustering results in post-hoc analysis, 
numerous cluster validity indexes (CVIs) (Liu et al., 2013), as indicator-
based functions of all cluster memberships, have been proposed. These 
CVIs are applicable to both numerical (Žalik and Žalik, 2011; Lee 
et al., 2018) and categorical data (Bai and Liang, 2015; Zhao et al., 
2017). However, these methods typically use indicators to assess the 
clusters in their entirety, evaluating the entire partition (cluster-level) 
rather than the correctness or statistical uncertainty of each sample’s 
cluster membership (sample-level). The latter provides a personalized 
interpretation for each sample, based on its current assigned cluster or 
potential assignments to alternative clusters.

Research on cluster membership evaluation is still in its infancy, 
with statistical inference techniques being employed to quantify the 
uncertainty between a sample and a target cluster. Although several 
methods for cluster membership evaluation have been proposed, they 
are primarily designed for panel data in economics (Dzemski and Okui, 
2024) and numerical data in biology (Chung, 2020), rather than for cat-
egorical data. From a statistical perspective, different data types require 
distinct modeling approaches, with corresponding statistics varying 
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accordingly. For instance, the method proposed in Chung (2020) relies 
on a test statistic based on the cluster center, a geometric concept 
that lacks a meaningful interpretation for categorical data. Further-
more, well-established methods that utilize sampling approaches to 
derive 𝑝-values (Chung, 2020) are often time-consuming and unsta-
ble, making them less reliable for accurate membership evaluation. 
This underscores the need for solutions that analytically derive 𝑝-
values to determine the statistical significance of cluster membership 
in categorical data.

To our knowledge, this is the first effort to investigate the problem 
of assessing the statistical significance of cluster membership for cat-
egorical data. The presented method is named as SigCM, which works 
as follows. Given a target cluster and one candidate sample, the null 
hypothesis is that the candidate sample has no association with the 
target cluster (i.e., the sample does not belongs to the cluster). To make 
the association assessment tractable, we make an assumption on the 
independence of different attributes. Thereafter, we employ the Fisher’s 
exact test to quantify the statistical significance of cluster membership 
with respect to each attribute in terms of a 𝑝-value. Then, we combine 
the 𝑝-values from all attributes via meta-analysis (Chang et al., 2013; 
Cinar and Viechtbauer, 2022) to form a consensus 𝑝-value. Obviously, 
a smaller final 𝑝-value indicates a more accurate cluster membership 
assignment.

Our method offers multifaceted potential applications: (1) In the 
absence of external class labels, the cluster membership validation 
result can be used to define a measure that is analogous to clustering 
accuracy, potentially enabling us to validate the clustering result in 
an unsupervised manner. (2) By reassigning samples to the cluster 
with the lowest 𝑝-value, we can enhance the clustering result under 
the assumption that no outlying samples are present. (3) By removing 
samples in a cluster that cannot pass a multiple testing correction 
procedure (Noble, 2009), we can further improve the purity of clusters 
under the assumption that outliers are present in the data set.

In summary, the main contributions of this work are as follows:

• For the first time, how to accurately assess the statistical signif-
icance of cluster membership for categorical data is introduced 
into the literature.

• A novel algorithm called SigCM is presented, which yields an 
analytical 𝑝-value based on Fisher’s exact test and meta-analysis 
to quantify the statistical significance of cluster membership.

• Through the ingenious use of cluster membership quantification 
results in terms of 𝑝-values, our algorithm can be employed for 
both cluster validation and cluster enhancement. It opens up new 
avenues for validating and improving clustering results from an 
angle that still remains untouched.

The remainder of this paper is structured as follows: Section 2 
highlights the motivation behind our method and discusses recent 
literature. Section 3 presents our proposed method and its applications. 
Section 4 presents experimental results on real data sets. Section 5 
concludes this paper.

2. Motivation and related works

The following motivations illustrate why our method plays a crucial 
role in cluster analysis and why it is essential to use it:

• Motivation 1: Our method aims to evaluate cluster membership. 
What role does this research field play in cluster analysis?

• Motivation 2: Building upon Motivation 1, what are the benefits 
of our method, particularly its use of statistical techniques?
2 
2.1. Answer to motivation 1

An ideal clustering pipeline is shown in Fig.  1. In cluster analysis, 
much of the research has focused on generating high-accuracy clus-
tering results, referred to as the in-clustering stage. During this stage, 
clustering algorithms designed for categorical data have developed 
from early methods like 𝑘-modes (Huang, 1998) to a range of state-
of-the-art (SOTA) algorithms, including both hard (Zhang and Cheung, 
2022) and fuzzy (Zhang et al., 2023) clustering methods. Due to the 
complex relationships among attribute values in categorical data (Qian 
et al., 2016; Jian et al., 2019; Zhu et al., 2022; Park et al., 2024), 
recent SOTA algorithms have increasingly focused on similarity-based 
representation learning techniques (Bai and Liang, 2022; Zhang et al., 
2022; Jian et al., 2018; Zhang et al., 2025). However, no single SOTA 
in-clustering algorithm guarantees optimal performance across all data 
sets, and the resulting clusters still require subsequent validation. Ad-
ditionally, in the pre-clustering stage, it remains unclear whether the 
application of advanced categorical data processing methods, such as 
feature selection (Bandyapadhyay et al., 2023; Yuan et al., 2024; Ling 
et al., 2025) and outlier detection (Li et al., 2023; Zhao et al., 2024b; 
Song et al., 2025), is ultimately beneficial or detrimental to subsequent 
clustering outcomes. These considerations collectively underscore the 
need for a post-clustering stage in cluster analysis, which aims to 
evaluate and manage clusters, particularly before applying them in 
high-risk domains. To further assess the impact of individual samples in 
the post-clustering stage, our method provides a more direct indicator 
for each sample, offering finer granularity than cluster-level functions 
such as CVIs.

2.2. Answer to motivation 2

For non-statistical cluster membership, assignments are typically 
optimized by clustering algorithms. Since these in-clustering methods 
always produce a final result, they are limited in reporting the extent 
of noise and spurious patterns, making it difficult to assess whether the 
results are significantly better than arbitrary assignments or random 
partitions. While CVIs can evaluate clustering results, they do not pro-
vide an indicator with direct qualitative meaning to determine whether 
the clustering outcome is valid.

As shown in Fig.  1, our statistical cluster membership evaluation 
method introduces a 𝑝-value indicator to determine whether a sample 
should be assigned to a cluster based on a predefined significance 
level. If the 𝑝-value for a target cluster is less than or equal to this 
threshold, the assignment is considered statistically significant and 
recommended; otherwise, it is not. Analogous to cluster assignments 
in clustering algorithms, a hard assignment is made if a sample has a 
statistically significant 𝑝-value for only one cluster. If multiple clusters 
meet the statistical threshold, a fuzzy assignment is made, with weights 
can be determined by the relative magnitudes of the 𝑝-values. A key 
distinction from non-statistical clustering algorithms is that our method 
allows for the possibility of no assignment if none of a sample’s cluster 
assignments meet the significance threshold.

It is worth noting that various efforts have been made to enhance 
the statistical robustness and interpretation of clustering for categorical 
data; however, these approaches differ fundamentally from our post-
clustering method. Prior work includes studies in the in-clustering stage 
that assess the statistical significance of a partition (Hu et al., 2025d) 
and evaluate the goodness of each split in a clustering tree (Hu et al., 
2025c,b). In the pre-clustering stage, a clusterability test has been 
proposed (Hu et al., 2025a) to determine whether the categorical data 
are suitable for clustering before applying any clustering algorithm.



L. Hu et al. Engineering Applications of Artiϧcial Intelligence 160 (2025) 111861 
Fig. 1. The role of statistical cluster membership evaluation methods in an ideal cluster analysis pipeline. The pre-clustering stage involves clusterability tests to assess whether 
inherent cluster structures exist in the data; the in-clustering stage uses clustering algorithms to optimize cluster memberships; and the post-clustering stage focuses on evaluating 
cluster memberships for subsequent validation or adjustment of clustering results. Our statistical cluster membership evaluation method provides a sample-level 𝑝-value interpretation 
for each cluster membership, potentially guiding cluster assignments during post-hoc operations.
3. Algorithm and applications

3.1. Problem formulation

Suppose a categorical data set 𝐷 = {𝑥1,… , 𝑥𝑁}, containing 𝑁
samples where each sample 𝑥𝑖 = [𝑥𝑖1,… , 𝑥𝑖𝑀 ] is composed of 𝑀
attribute values, is divided into 𝐾 non-overlapping clusters, denoted 
as 𝐷 = 𝐷1 ∪ ⋯ ∪ 𝐷𝐾 . In the 𝑘th cluster 𝐷𝑘, there are 𝑁 (𝑘) samples 
𝑥(𝑘)𝑖 ∈ {𝑥(𝑘)1 ,… , 𝑥(𝑘)

𝑁 (𝑘)}. For a candidate sample 𝑥(𝑘)𝑖  from the 𝑘th cluster 
and a target 𝑘′-th cluster, we assess whether 𝑥(𝑘)𝑖  belongs to cluster 𝑘′
in terms of a 𝑝-value that is denoted by 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ). When 𝑘′ = 𝑘, 
the 𝑝-value evaluates the cluster membership of 𝑥(𝑘)𝑖  with respect to its 
currently allocated cluster.

Algorithm 1 SigCM
Input: A sample 𝑥(𝑘)𝑖  and a target cluster 𝐷𝑘′  from the given categorical 

data set 𝐷, and a threshold 𝛼.
Output: An analytical 𝑝-value 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ).
1: for 𝑚 = 1 to 𝑀 do 
2: 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖𝑚 ) ⇐ Fisher’s exact test (𝑥(𝑘)𝑖𝑚 , 𝐷𝑘′ , 𝐷 ⧵𝐷𝑘′
)

3: end for
4: 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ) ⇐ Binomial test (𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖1∶𝑀 ), 𝛼

)

5: return 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖 )

3.2. The SigCM algorithm

Given any sample in the data set and a target cluster, our proposed 
SigCM algorithm calculates a 𝑝-value to assess its cluster membership. 
That is, 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ) will be returned from SigCM (𝑥(𝑘)𝑖 , 𝐷𝑘′ , 𝐷
) as 

shown in Algorithm 1. We calculate 𝑝-values for all 𝑀 attributes (Lines 
1∼3) by using the Fisher’s exact test. Then, we combine all 𝑀 𝑝-
values denoted as 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖1∶𝑀 ) into a single 𝑝-value via a meta-analysis 
method. Here we employ the Binomial test (Cinar and Viechtbauer, 
2022) with a user-specified threshold 𝛼.

3.2.1. Fisher’s exact test
For the 𝑚th attribute, measuring the association between the sample 

𝑥(𝑘)𝑖  and the 𝑘′-th cluster is equivalent to assessing the statistical asso-
ciation between two binary variables defined below. One is the cluster 
3 
variable denoted by 𝐶, where 𝐶 = 1 if the sample belongs to 𝐷𝑘′  and 
𝐶 = 0 otherwise. Another is the category variable denoted by 𝑄, where 
𝑄 = 1 if the 𝑚th attribute value of the sample equals 𝑥(𝑘)𝑖𝑚  and 𝑄 = 0
otherwise.

Suppose 𝑁𝑞 and 𝑁 𝑖𝑛
𝑞  samples take the attribute value 𝑥(𝑘)𝑖𝑚  in 𝐷 and 

𝐷𝑘′ , respectively. Then, 𝑁𝑞 = 𝑁 𝑖𝑛
𝑞 + 𝑁𝑜𝑢𝑡

𝑞 , where 𝑁𝑜𝑢𝑡
𝑞  is the number 

of samples that take the attribute value 𝑥(𝑘)𝑖𝑚  in 𝐷 ⧵ 𝐷𝑘′ . Meanwhile, 
the total number of samples in 𝐷 ⧵ 𝐷𝑘′  is denoted by 𝑁̃ (𝑘′), with 
𝑁 = 𝑁 (𝑘′) + 𝑁̃ (𝑘′). Based on above notations and definitions, we can 
construct the following contingency table: 

𝑄 = 1 𝑄 = 0 Total
𝐶 = 1 𝑁 𝑖𝑛

𝑞 𝑁 (𝑘′) −𝑁 𝑖𝑛
𝑞 𝑁 (𝑘′)

𝐶 = 0 𝑁𝑜𝑢𝑡
𝑞 𝑁̃ (𝑘′) −𝑁𝑜𝑢𝑡

𝑞 𝑁̃ (𝑘′)

Total 𝑁𝑞 𝑁 −𝑁𝑞 𝑁
The Fisher’s exact test is one of the most widely used methods for 

testing the association between two binary variables. Under the null 
hypothesis of no association between the sample 𝑥(𝑘)𝑖  and the 𝑘′-th 
cluster with respect to the 𝑚th attribute, i.e., the independence between 
𝑄 and 𝐶, the cell count 𝑁 𝑖𝑛

𝑞  follows a hypergeometric distribution: 

𝑃 (𝑁 𝑖𝑛
𝑞 |𝐷𝑘′ ) =

(𝑁 (𝑘′)

𝑁 𝑖𝑛
𝑞

)

×
(𝑁̃ (𝑘′)

𝑁𝑜𝑢𝑡
𝑞

)

(𝑁
𝑁𝑞

)
. (1)

To quantify if the null hypothesis of no association is true, the 𝑝-
value is typically employed in significance testing. The 𝑝-value is the 
probability of obtaining results at least as extreme as the observed 
results when the null hypothesis is true. In our problem, more extreme 
results correspond to the cases that the cell count when 𝑄 = 1 and 
𝐶 = 1 is larger than 𝑁 𝑖𝑛

𝑞 . This is, it is considered to be more extreme if 
the attribute value 𝑥(𝑘)𝑖𝑚  is over-expressed in the cluster 𝐷𝑘′ . Hence, the 
𝑝-value can be calculated as the following cumulative probability: 

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖𝑚 ) =

min
(

𝑁 (𝑘′)−𝑁 𝑖𝑛
𝑞 ,𝑁𝑜𝑢𝑡

𝑞

)

∑

𝑛=0
𝑃 (𝑁 𝑖𝑛

𝑞 + 𝑛 | 𝐷𝑘′ ) , (2)

where min
(

𝑁 (𝑘′) −𝑁 𝑖𝑛
𝑞 , 𝑁𝑜𝑢𝑡

𝑞
) indicates the upper bound on the number 

of samples that can take the attribute value 𝑥(𝑘)𝑖𝑚  within the target cluster 
𝐷𝑘′  in addition to another 𝑁 𝑖𝑛

𝑞  samples. A concise illustrative example 
for Eq.  (2) is shown in Fig.  2. Given that an attribute value appears 6 
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Fig. 2. Illustration of extreme probabilities summed in Eq.  (2).
times in a data set of 10 samples, the figure illustrates more extreme 
cases where it occurs 4 or more times within an observed target cluster 
of 7 samples.

3.2.2. Binomial test
In the Binomial test, we aim to consolidate 𝑝-values from the Fisher’s 

exact test on 𝑀 attributes into a single 𝑝-value. We start by defining a 
new test statistic that aggregates the statistical significance of 𝑀 tests: 

𝑟 =
𝑀
∑

𝑚=1
𝛿(𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖𝑚 ), 𝛼) , (3)

where 

𝛿(𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖𝑚 ), 𝛼) =

{

0 if 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖𝑚 ) > 𝛼

1 if 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖𝑚 ) ≤ 𝛼

(4)

is an indicator function for each attribute based on the threshold 𝛼. 
Assuming that all 𝑀 null hypotheses are true, the number of tests 𝑟
that leads to rejection follows a Binomial distribution with a rejection 
probability of 𝛼. The cumulative function, which accounts for more 
significant individual cases, is then calculated to determine the final 
𝑝-value as follows: 

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖 ) =

𝑀
∑

ℎ=𝑟

(𝑀
ℎ

)

𝛼ℎ (1 − 𝛼)𝑀−ℎ , (5)

which is the probability of obtaining at least 𝑟 rejections under the 
joint null. Eq. (5) aggregates 𝑀 individual testing results, providing 
a comprehensive assessment on the cluster membership with respect to 
all 𝑀 attributes.

3.2.3. Time complexity analysis of SigCM
To derive the 𝑝-value of a target cluster membership for a sample 

𝑥(𝑘)𝑖  using SigCM (Algorithm 1), the procedure primarily consists of two 
steps:

• Fisher’s exact test step: In the worst case, computing 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖𝑚 )

in Eq.  (2) requires to calculate at most 𝑁 probabilities. Each 
𝑃 (𝑁 𝑖𝑛

𝑞 |𝐷𝑘′ ) in Eq.  (1) can be obtained in (1) time using a hash 
table to store the counts. Thus, each Fisher’s exact test is com-
puted in (𝑁) time. Since 𝑀 Fisher’s exact tests are performed 
in Algorithm 1, the worst-case time complexity for this step is 
(𝑁𝑀).

• Binomial test step: Given the 𝑀 𝑝-values obtained from Fisher’s 
exact test step, the final aggregated 𝑝-value is computed by sum-
ming up at most 𝑀 binomial probability mass functions in Eq. 
(5), leading to a worst-case time complexity of (𝑀).
4 
Combining both steps, the overall worst-case time complexity of the 
SigCM algorithm is (𝑁𝑀) + (𝑀) = (𝑁𝑀).

3.3. Applications

To demonstrate the usefulness of SigCM, we explore three key 
applications: cluster validation, cluster refinement, and cluster en-
hancement, as illustrated in Fig.  3.

For cluster validation, we will introduce a new validity index based 
on a multiple testing correction procedure. More precisely, the Bon-
ferroni correction procedure (Cui et al., 2021) is employed to control 
the Family-Wise Error Rate (FWER) of each cluster. That is, only the 
samples with 𝑝-values that are smaller than the adjusted significance 
level are considered to be true members of the corresponding cluster. 
The validation index named as Cluster Membership Index (CMI) is de-
fined as the percentage of samples that can pass the FWER control. For 
cluster refinement and enhancement, we can remove outliers through 
FWER control or reassign samples to other clusters with smaller 𝑝-
values to improve the cluster quality. The details of these applications 
are presented in the following three subsections.

3.3.1. Cluster membership index

Algorithm 2 Validation operation
Input: A categorical data set partitioned into 𝐾 clusters, 𝐷 = 𝐷1 ∪⋯∪

𝐷𝐾 , and a threshold 𝛼.
Output: A validation index CMI.
1: for 𝑖 = 1 to 𝑁 do 
2: 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)

𝑖 ) ⇐ SigCM (𝑥(𝑘)𝑖 , 𝐷𝑘
)

3: end for
4: CMI ⇐ The percentage of 𝑥(𝑘)𝑖  passing FWER (𝑝val(𝑥(𝑘→𝑘)

𝑖∶𝑁 ), 𝛼
)

5: return  CMI

The proposed validity index, termed CMI, is defined by the pro-
portion of samples whose 𝑝-values are no larger than a cluster-specific 
adjusted significance level: 

CMI =
∑𝐾

𝑘=1
∑𝑁 (𝑘)

𝑖=1 𝛿
(

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ), 𝛼

𝑁 (𝑘)

)

𝑁
, (6)

where 

𝛿
(

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ), 𝛼

𝑁 (𝑘)

)

=

{

0 if 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ) > 𝛼

𝑁 (𝑘)

1 if 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ) ≤ 𝛼

𝑁 (𝑘)

(7)

indicates a binary decision for each sample 𝑥(𝑘)𝑖  with respect to its 
currently allocated cluster, based on the adjusted significance level 
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Fig. 3. Three potential applications by employing the cluster membership evaluation capability in SigCM. Taking 8 samples from 2 clusters as an example, (a) there are 3 samples 
colored white that do not pass the FWER control, with CMI = 5∕8 calculated based on the proportion of remaining samples to all samples. (b) Similar to (a), the three samples 
colored red can be viewed as outliers and removed to refine clusters. (c) Two samples colored yellow are reassigned to another cluster with a smaller cluster membership 𝑝-value.
𝛼
𝑁 (𝑘) . This adjustment accounts for multiple comparisons within 𝐷𝑘. The 
validation operation based on SigCM is presented in Algorithm 2.

Given a clustering result, the CMI can assess the validity of clusters. 
Specifically, CMI is analogous to cluster accuracy since it also ranges 
from 0 to 1 and is defined based on the percentage of ‘‘correctly’’ 
identified samples. More importantly, our index is an internal one, 
which can be calculated in an unsupervised manner.

3.3.2. Cluster refinement via outlier removal

Algorithm 3 Refinement operation
Input: A categorical data set partitioned into 𝐾 clusters, 𝐷 = 𝐷1 ∪⋯∪

𝐷𝐾 , and a threshold 𝛼.
Output: A refined categorical data set with 𝐾 clusters, 𝐷̂ = 𝐷̂1∪⋯∪𝐷̂𝐾 .
1: for 𝑘 = 1 to 𝐾 do 
2: Initialize 𝐷̂𝑘 ← 𝐷𝑘
3: for 𝑗 = 1 to 𝑁 (𝑘) do 
4: 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)

𝑗 ) ⇐ SigCM (𝑥(𝑘)𝑗 , 𝐷𝑘
)

5: 𝐷̂𝑘 ⇐ 𝐷̂𝑘 ⧵ {𝑥
(𝑘)
𝑗 ∣ failing to pass FWER (𝑝val(𝑥(𝑘→𝑘)

𝑗 ), 𝛼)}
6: end for
7: end for
8: return 𝐷̂ = 𝐷̂1 ∪⋯ ∪ 𝐷̂𝐾

For the 𝑘th cluster 𝐷𝑘, the refinement can be achieved by remov-
ing specific samples identified as outliers. The resulting new cluster, 
denoted as 𝐷̂𝑘, is defined as follows: 

𝐷̂𝑘 = 𝐷𝑘 ⧵ {𝑥
(𝑘)
𝑖 ∣ 𝛿

(

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ), 𝛼

𝑁 (𝑘)

)

= 0} , (8)

where all samples that cannot pass the FWER control are removed. The 
refinement operation based on SigCM is described in Algorithm 3.

If the CMI is close to 0, or if more than half of the samples in 𝐷𝑘
cannot pass the FWER control, i.e., ||

|

{𝑥(𝑘)𝑖 ∣ 𝛿
(

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘)
𝑖 ), 𝛼

𝑁 (𝑘)

)

= 0}||
|

>
𝑁 (𝑘)

2 , we will not perform this refinement process in such cases, as the 
cluster is probably not correctly identified.

3.3.3. Cluster enhancement via reassignment

Beyond measures focused on cluster validation, the output of SigCM 
also enables the reassignment of cluster labels. This is achieved by reas-
signing each sample to the cluster with the smallest cluster membership 
𝑝-value, provided that this 𝑝-value also passes the FWER control of the 
5 
Algorithm 4 Enhancement operation
Input: A categorical data set partitioned into 𝐾 clusters, 𝐷 = 𝐷1 ∪⋯∪

𝐷𝐾 , and a threshold 𝛼.
Output: Enhanced cluster assignment to 𝑁 samples, each with label: 

𝑘̂𝑥(𝑘)𝑖
.

1: for 𝑖 = 1 to 𝑁 do 
2: Initialize 𝑝𝑣𝑎𝑙set ← ∅
3: for 𝑘′ = 1 to 𝐾 do 
4: 𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ) ⇐ SigCM (𝑥(𝑘)𝑖 , 𝐷𝑘′
)

5: if passing FWER (𝑝val(𝑥(𝑘→𝑘′)
𝑖 ), 𝛼) then 

6: 𝑝𝑣𝑎𝑙set ← 𝑝𝑣𝑎𝑙set ∪ {𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)
𝑖 )}

7: end if
8: end for
9: if 𝑝𝑣𝑎𝑙set ≠ ∅ then 
10: 𝑘̂𝑥(𝑘)𝑖

⇐ cluster label corresponding to the smallest 𝑝-value in 
𝑝𝑣𝑎𝑙set

11: end if
12: end for
13: return 𝑘̂𝑥(𝑘)𝑖

newly assigned cluster. The new cluster for any sample 𝑥(𝑘)𝑖 , denoted as 
𝑘̂𝑥(𝑘)𝑖

, is given as follows: 

𝑘̂𝑥(𝑘)𝑖
= argmin

𝑘′∈[1∶𝐾]
𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘′)

𝑖 ) , subject to 𝛿
(

𝑝𝑣𝑎𝑙(𝑥(𝑘→𝑘̂)
𝑖 ), 𝛼

𝑁 (𝑘̂)

)

= 1 .

(9)

The enhancement operation based on SigCM is described in Algo-
rithm 4. Note that the reassignment here is a one-step procedure. It 
involves applying SigCM to all samples in the fixed clustering results, 
followed by a unified reassignment. Other methods of reassignment 
that involve multiple iterations, such as local updates or step-by-step 
reassignment where each step builds upon the results of the previous 
one, have not yet been explored.

4. Experimental results

To verify the effectiveness of our proposed SigCM in assessing 
cluster membership from a statistical significance perspective, we first 
introduce the evaluation strategy and criteria in Section 4.1. Before 
demonstrating the applications of SigCM, we compare our method 
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Table 1
The properties of 18 UCI categorical data sets, which are available at https://archive.
ics.uci.edu/datasets. |𝑄| indicates the number of categories from all attributes.
 Data set Abbr. 𝑁 𝑀 |𝑄| 𝐾  
 Lenses Ls 24 4 9 3  
 Lung Cancer Lc 32 56 159 3  
 Soybean (Small) So 47 21 58 4  
 Zoo Zo 101 16 36 7  
 Promoter Sequences Ps 106 57 228 2  
 Hayes-Roth Hr 132 4 15 3  
 Lymphography Ly 148 18 59 4  
 Heart Disease Hd 303 13 57 5  
 Solar Flare Sf 323 9 25 6  
 Primary Tumor Pt 339 17 42 21 
 Dermatology De 366 33 129 6  
 House Votes Hv 435 16 48 2  
 Balance Scale Bs 625 4 20 3  
 Credit Approval Ca 690 9 45 2  
 Breast Cancer Bc 699 9 90 2  
 Mammographic Mass Mm 824 4 18 2  
 Tic-Tac-Toe Tt 958 9 27 2  
 Car Evaluation Ce 1728 6 21 4  

with Jackstraw1 (Chung, 2020) in Section 4.2, the only comparable 
method currently available. Jackstraw is designed for numerical data 
and requires categorical data to be encoded into a numerical format 
before use. However, as shown by the preliminary experimental results 
in Section 4.2, Jackstraw fails to meet the validation requirements for 
cluster membership evaluation on categorical data and is therefore ex-
cluded from subsequent experiments. In Sections Sections 4.3–4.5, we 
individually examine the applications of SigCM, including the proposed 
CMI, cluster refinement, and cluster enhancement. To demonstrate 
the scalability of these SigCM-based applications, we apply SigCM 
algorithm to large-scale categorical data sets in Section 4.6 and propose 
potential strategies to accelerate computation.

4.1. Data sets and evaluation criteria

In the experiment2, we choose 18 real categorical data sets from the 
widely-used UCI repository (Dua and Graff, 2019). The characteristics 
of these data sets we employed are presented in Table  1.

For each data set 𝐷, the ground-truth cluster label 𝑘̇𝑖 of each sample 
𝑥𝑖 in 𝐷 is available. These labels are used to compute benchmark exter-
nal evaluation metrics (Rezaei and Fränti, 2016), including Clustering 
Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand 
Index (ARI), and F1-score (FSC), which serve as the gold standard for 
evaluating our declared performance. Higher values of these metrics 
suggest better clustering quality.

Given the clustering labels  and the ground-truth labels ̇ for all 
samples in 𝐷, where each sample 𝑥𝑖 has a ground-truth cluster label 𝑘̇𝑖. 
The ACC is defined as follows: 

ACC =
∑𝑁

𝑖=1 𝛿
(

𝑘̇𝑖,map(𝑘𝑖)
)

𝑁
, (10)

where map(𝑘𝑖) is a mapping function that aligns 𝑘𝑖 with its equivalent 
true label 𝑘̇𝑖, and 𝛿(𝑘̇𝑖,map(𝑘𝑖)) = 1 if 𝑘̇𝑖 = map(𝑘𝑖) and 0 otherwise. We 
use the Kuhn–Munkres algorithm (Cai et al., 2005) to achieve the best 
mapping.

The NMI is defined a follows: 

NMI = 1
2
⋅
H() + H(̇) − H(, ̇)

H() + H(̇)
, (11)

1 The ‘jackstraw’ R package used in our experiments was obtained 
from https://cran.r-project.org/web/packages/jackstraw. In our implementa-
tion, the function jackstraw_cluster is used to specify cluster centers 
externally.

2 The SigCM algorithm and the code for generating experimental data are 
available at https://github.com/hulianyu/SigCM.
6 
where both types of labels are treated as random variables. Here, H()
and H(̇) denote their respective entropies, while H(, ̇) represents 
their joint entropy.

The ARI is defined as follows: 
ARI = RI − E[RI]

max(RI) − E[RI]
, (12)

where the Rand Index (RI) measures the proportion of correctly as-
signed sample pairs, while E[RI] represents its expected value and 
max(RI) denotes its maximum value. The latter two can be computed us-
ing a permutation model. The ARI ranges between −1 and 1, adjusting 
the RI. The RI is defined as follows: 
RI = TP + TN

TP + FP + FN + TN . (13)

In Eq.  (13), TP (True Positive) represents the number of sample pairs 
that share the same label in ̇ and are correctly assigned to the same 
cluster in ; FP (False Positive) refers to the number of sample pairs 
with different labels in ̇ that are incorrectly clustered together in ; 
FN (False Negative) denotes the number of sample pairs that share 
the same label in ̇ but are incorrectly assigned to different clusters 
in ; TN (True Negative) represents the number of sample pairs with 
different labels in ̇ that are correctly assigned to different clusters in 
.

The FSC is defined a follows: 
FSC = 2 ⋅ Precision ⋅ RecallPrecision + Recall , (14)

where 
Precision = TP

TP + FP , Recall = TP
TP + FN . (15)

In the upcoming experiments, we demonstrate the efficacy of CMI 
as an alternative to these metrics and examine how cluster quality, 
as measured by these metrics, changes before and after applying our 
cluster refinement and enhancement operations based on SigCM.

All evaluations are conducted based on three types of partitions: 
(i) random partitions, (ii) partitions obtained by clustering algorithms, 
and (iii) the ground-truth partition. These partitions inherently reflect 
different levels of confidence in cluster membership assignments. In 
random partitions, nearly all samples are assumed to be incorrectly 
assigned to their true clusters. In contrast, partitions generated by clus-
tering algorithms tend to assign most samples to the correct clusters. 
For the ground-truth partition, the values of ACC, NMI, ARI, and FSC 
are 1, although exceptions may occur in practice due to misleading 
manually annotated cluster labels. The generation process of these 
partitions is described as follows:

• Random partitions: Each data set undergoes 100 independent 
random partitioning processes, where the ground-truth labels of 
all samples are randomly permuted. In general, such partitions 
result in invalid cluster memberships.

• Algorithm-derived partitions: We run the classical 𝑘-modes clus-
tering algorithm (Huang, 1998) and five representative SOTA 
algorithms, namely CDCDR3 (Bai and Liang, 2022), Het2Hom4

(Zhang et al., 2022), CMS5 (Jian et al., 2018), ADC6 (Zhang 
and Cheung, 2023) and COForest (Zhao et al., 2024a), each 
for 100 independent runs on each data set. Due to algorithmic 
randomness, these methods produce varying results with different 
levels of quality. To represent overall performance, we report the 
average results across all runs.

3 In our experiments, the autoencoder and joint operation are selected in 
the proposed framework of the original paper.

4 Since the data sets used in our experiments do not consider ordinal 
attributes, the number of ordinal attributes is set to 0 in the implementation.

5 The parameter related to intra- and inter-attribute couplings is set to 
0.5 as recommended in the original paper, and spectral clustering is finally 
employed.

6 Consistent with the parameter settings in Het2Hom, the number of 
nominal attributes is set to 𝑀 in the implementation.

https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/datasets
https://cran.r-project.org/web/packages/jackstraw
https://github.com/hulianyu/SigCM
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Fig. 4. The boxplot shows the distribution of 𝑝-values for assigned cluster membership, as output by SigCM and Jackstraw, across 100 random partitions and the ground-truth 
partition on 18 data sets. To run Jackstraw, categorical variables are one-hot encoded into numerical data. Jackstraw also requires cluster centers, which are calculated based on 
the provided partition labels. The boxplot is marked in blue if its median exceeds the significance level of 0.05 (indicated by the horizontal dashed line), and in red if it is less 
than or equal to 0.05.
4.2. SigCM vs. Jackstraw

To demonstrate the preliminary applicability of SigCM in assessing 
cluster membership, we employed two distinct types of partitions for 
each categorical data set: 100 random partitions, regarded as spurious 
clustering results, and one ground-truth partition, considered the de 
facto correct clustering result. Based on these partitions, we used SigCM 
to compute each sample’s 𝑝-value for its assigned cluster membership. 
To compare cluster membership 𝑝-values under the same setting, we 
implemented the Jackstraw method, which requires all categorical 
attributes to be converted into numerical format via one-hot encoding. 
Additionally, Jackstraw relies on cluster centers, which were obtained 
by computing the mean of each attribute value based on the given 
clusters in the partitions.

As illustrated in Fig.  4, the boxplots display the distribution of de-
rived 𝑝-values for all samples across 18 UCI categorical data sets in two 
partition groups. The observations from the experimental results, which 
suggest that SigCM is more reliable than Jackstraw, are summarized as 
follows:

• Random partition group: SigCM algorithm consistently reports 
larger 𝑝-values for each sample’s cluster membership, with all 
randomly assigned cluster memberships deemed invalid, as their 
𝑝-values exceed the significance level of 0.05. Additionally, SigCM 
demonstrates statistical robustness against randomness across all 
18 data sets. In contrast, Jackstraw generally produces misleading 
results by assigning smaller 𝑝-values, often incorrectly identifying 
cluster memberships as statistically significant 𝑝-values (≤ 0.05) 
on most data sets, including Lc, So, Zo, Ly, Hd, Sf, Hv, Ca, Bc, 
and Mm.

• Ground-truth partition group: SigCM occasionally reports large 
𝑝-values (> 0.05) to cluster memberships on two data sets (Ls 
and Lc). However, even in these exceptional cases, the 𝑝-values 
remain notably smaller than those in the random partition group, 
reflecting a distinct clustering tendency. In contrast, this trend is 
frequently violated in Jackstraw’s results, typically observed in 
7 
data sets such as Zo and Bs. Furthermore, Jackstraw generally 
fails to recognize the correct assignments based on ground-truth 
labels, reporting unexpected 𝑝-values (> 0.05) on 7 data sets: Ls, 
Zo, Ps, Hr, Bs, Tt, and Ce.

4.3. CMI vs. external metrics

To further demonstrate the effectiveness of SigCM, we utilize its 
derived validation index, CMI, to evaluate cluster quality without 
requiring ground-truth labels. We compare the performance of CMI 
against external metrics across different partitions: invalid (random) 
partitions, which serve as a baseline reference, and optimized parti-
tions, generated by both classical and SOTA clustering algorithms, as 
detailed in Table  2. A simple example is shown in Fig.  5 to illustrate the 
characteristics of CMI. Specifically, under invalid partitions, the CMI 
value tends toward 0, identifying nearly all samples as being statisti-
cally non-significant; whereas under higher-quality partitions, it tends 
toward 1, identifying more samples as being statistically significant and 
fewer deemed to be outliers.

In the absence of a quantitative cutoff threshold for determining 
what value indicates high-quality clustering, we adopt a relatively 
intuitive distinguishing value of 0.5 (50%) for the following reasons:

• CMI is based on counting the number of samples with statis-
tically significant assigned cluster memberships. If exactly half 
of the samples in the data set meet or fail to meet the sta-
tistical significance criterion, the clustering tendency remains 
indeterminate.

• Since we consider statistically significant and non-significant sam-
ples to contribute equally when assessing clustering validity, we 
deem clustering to be of high quality if the former outnumbers the 
latter. Conversely, if fewer than half do, the clustering is deemed 
to be of low quality.
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Table 2
Average CMI and external metrics across diverse sets of 100 partitions generated by random partitioning or different clustering algorithms. The last column shows ‘‘#>0.5’’, 
representing the number of data sets for which the average metric exceeds 0.5. Values greater than 0.5 are marked in bold.
 @Validation Ls Lc So Zo Ps Hr Ly Hd Sf Pt De Hv Bs Ca Bc Mm Tt Ce #>0.5

 CMI Random 0 0 0.016 0.015 4.E−04 2.E−04 9.E−04 0.001 0.002 4.E−04 0.019 0.009 1.E−04 2.E−04 0.007 0 3.E−04 3.E−05 0  
 𝑘-modes 0.019 0.471 0.994 0.968 0.495 0.445 0.945 0.930 0.838 0.907 0.999 0.992 0.011 0.495 0.899 0.304 0.348 0.195 9  
 CDCDR 0 0.412 0.981 0.957 0.439 0.127 0.926 0.731 0.890 0.826 1.000 0.945 0.000 0.258 0.774 0.312 0.173 0.009 9  
 Het2Hom 0.025 0.391 1 0.934 0.002 0.227 0.930 0.814 0.921 0.843 1 0.991 0 0.444 0.960 0.329 0.238 0.004 9  
 CMS 0 0.780 1 0.932 0.601 0.227 0.976 0.953 0.928 0.563 1 0.993 0.015 0.500 0.977 0.309 0 0 12  
 ADC 0.025 0.383 0.991 0.958 0.563 0.347 0.913 0.942 0.887 0.864 0.997 0.993 0.009 0.431 0.953 0.303 0.332 0.176 10  
 COForest 0.013 0.611 0.995 0.970 0.579 0.258 0.842 0.769 0.876 0.893 0.999 0.993 0.003 0.378 0.889 0.306 0.159 0.009 11  
 ACC Random 0.5 0.453 0.371 0.295 0.536 0.391 0.494 0.367 0.256 0.172 0.232 0.527 0.446 0.513 0.547 0.512 0.548 0.543 7  
 𝑘-modes 0.555 0.523 0.851 0.721 0.562 0.369 0.443 0.396 0.478 0.296 0.589 0.866 0.423 0.754 0.904 0.818 0.549 0.385 11  
 CDCDR 0.471 0.538 0.891 0.689 0.573 0.488 0.476 0.388 0.412 0.282 0.723 0.832 0.449 0.629 0.794 0.798 0.559 0.393 10  
 Het2Hom 0.533 0.557 1 0.704 0.502 0.333 0.495 0.349 0.443 0.284 0.750 0.874 0.467 0.827 0.967 0.818 0.552 0.368 11  
 CMS 0.563 0.583 1 0.633 0.766 0.341 0.502 0.317 0.441 0.261 0.811 0.878 0.381 0.672 0.964 0.826 0.517 0.400 12  
 ADC 0.526 0.508 0.891 0.721 0.615 0.382 0.501 0.423 0.485 0.313 0.639 0.871 0.442 0.651 0.958 0.820 0.543 0.369 12  
 COForest 0.554 0.548 0.836 0.707 0.626 0.408 0.499 0.368 0.417 0.277 0.708 0.876 0.456 0.714 0.921 0.809 0.564 0.383 11  
 NMI Random 0.121 0.066 0.086 0.117 0.006 0.014 0.031 0.022 0.027 0.163 0.020 0.001 0.004 8.E−04 8.E−04 6.E−04 8.E−04 0.003 0  
 𝑘-modes 0.248 0.199 0.838 0.749 0.026 0.007 0.112 0.153 0.290 0.339 0.572 0.459 0.016 0.210 0.563 0.326 0.012 0.069 4  
 CDCDR 0.153 0.205 0.886 0.707 0.032 0.354 0.150 0.170 0.215 0.335 0.812 0.393 0.038 0.079 0.268 0.303 0.006 0.075 3  
 Het2Hom 0.238 0.249 1 0.789 0.002 5.E−17 0.160 0.171 0.249 0.346 0.771 0.480 0.003 0.357 0.777 0.327 0.012 0.063 4  
 CMS 0.287 0.232 1 0.645 0.300 3.E−04 0.183 0.127 0.234 0.310 0.804 0.490 0.014 0.127 0.778 0.338 5.E−05 0.117 4  
 ADC 0.214 0.184 0.885 0.783 0.081 0.011 0.150 0.178 0.301 0.355 0.687 0.475 0.029 0.129 0.748 0.328 0.009 0.040 4  
 COForest 0.283 0.248 0.876 0.773 0.085 0.029 0.130 0.135 0.230 0.324 0.789 0.482 0.034 0.211 0.668 0.320 0.008 0.095 4  
 ARI Random −0.002 0.001 0.002 6.E−04 −0.001 5.E−06 −4.E−04 −0.002 2.E−04 −4.E−04 −0.001 −0.001 2.E−05 −4.E−04 −7.E−04 −4.E−04 3.E−04 −7.E−04 0  
 𝑘-modes 0.127 0.121 0.767 0.671 0.021 −0.009 0.077 0.149 0.215 0.093 0.451 0.534 0.016 0.264 0.670 0.403 0.016 0.047 4  
 CDCDR 0 0.412 0.981 0.957 0.439 0.127 0.926 0.731 0.890 0.826 1.000 0.945 4.E−04 0.258 0.774 0.312 0.173 0.009 9  
 Het2Hom 0.099 0.168 1 0.652 4.E−04 −0.015 0.172 0.127 0.177 0.116 0.706 0.557 7.E−04 0.441 0.871 0.404 0.014 0.030 5  
 CMS 0.167 0.168 1 0.496 0.280 −0.015 0.192 0.090 0.184 0.090 0.745 0.571 0.015 0.150 0.861 0.426 −0.001 0.077 4  
 ADC 0.077 0.101 0.836 0.681 0.082 −0.004 0.139 0.188 0.229 0.125 0.554 0.550 0.028 0.154 0.847 0.410 0.012 0.026 5  
 COForest 0.139 0.146 0.803 0.666 0.091 0.016 0.121 0.116 0.134 0.089 0.659 0.566 0.034 0.250 0.759 0.399 0.015 0.055 5  
 FSC Random 0.437 0.322 0.252 0.234 0.495 0.345 0.467 0.352 0.213 0.108 0.198 0.524 0.430 0.505 0.547 0.4997 0.547 0.542 5  
 𝑘-modes 0.477 0.431 0.831 0.741 0.512 0.352 0.407 0.397 0.387 0.180 0.567 0.773 0.414 0.646 0.857 0.704 0.535 0.396 9  
 CDCDR 0.406 0.423 0.885 0.681 0.526 0.611 0.433 0.381 0.325 0.168 0.755 0.750 0.423 0.589 0.756 0.695 0.535 0.403 10  
 Het2Hom 0.439 0.483 1 0.717 0.662 0.327 0.447 0.360 0.337 0.179 0.762 0.784 0.597 0.730 0.942 0.703 0.533 0.394 10  
 CMS 0.473 0.457 1 0.589 0.667 0.327 0.453 0.322 0.339 0.152 0.795 0.791 0.388 0.598 0.936 0.713 0.526 0.405 9  
 ADC 0.440 0.450 0.885 0.747 0.556 0.343 0.449 0.420 0.392 0.194 0.654 0.781 0.424 0.621 0.931 0.706 0.528 0.386 9  
 COForest 0.468 0.452 0.858 0.732 0.552 0.352 0.440 0.360 0.327 0.167 0.733 0.788 0.438 0.644 0.898 0.706 0.538 0.396 9  
Fig. 5. Illustration of CMI values under a random partition and two partitions generated by clustering algorithms. Two-dimensional scatter plots (t-SNE on Zoo data set with 
Hamming distance) use color to indicate cluster labels and shape to indicate whether each sample’s cluster membership is identified as being statistically significant.
• To further verify this cutoff threshold, we divide algorithm-
derived partitions into two groups: those with CMI> 0.5, deemed 
high-quality, and those with CMI< 0.5, deemed low-quality. The 
distribution of external metric values for these two groups is 
shown in Fig.  6. It can be concluded that, in general, partitions 
with CMI> 0.5 exhibit significantly higher clustering quality 
compared to those with CMI< 0.5, as consistently supported by 
all external metrics.

To ensure consistency in subsequent analyses, all indices are in-
terpreted in the same manner, with overall performance evaluated 
based on the cutoff threshold presented in the last column of Table 
2. Based on experimental observations, CMI exhibits the following two 
intuitive characteristics, neither of which is simultaneously satisfied by 
all external metrics:

• For random partitions, all evaluated values are expected to be less 
than 0.5, often approaching 0. This holds for CMI, NMI, and ARI, 
whereas ACC and FSC indicate a tendency toward moderate clus-
tering quality in such random assignments, with values exceeding 
0.5 on 7 and 5 data sets, respectively, introducing ambiguity in 
interpretation.
8 
• For algorithm-derived partitions, the evaluated values are gener-
ally expected to align with the majority of other indices (typically 
three or four) in identifying moderate-quality clustering. For ex-
ample, in CMS partitions on Zo, when most other indices with 
values exceeding 0.5 indicate moderate-quality clustering, CMI 
also maintains consistency with a value greater than 0.5. This 
holds for CMI, ACC, and FSC, whereas NMI and ARI exhibit 
inconsistencies in certain cases. Typically, NMI conflicts with all 
other indices across all algorithm-derived partitions on Hv and 
CDCDR partitions on Bc, while ARI conflicts with all other indices 
in 𝑘-modes partitions on De and CMS partitions on Zo.

Moreover, with respect to the overall ‘‘#>0.5’’ counts across the 
seven partition groups in Table  2, CMI exhibits a high level of con-
sistency with other indices. Specifically, CMI shares the same count 
with NMI and ARI in random partitions, FSC in 𝑘-modes partitions, 
ARI in CDCDR partitions, and ACC in CMS and COForest partitions. 
This motivates a further examination of the relationship between CMI 
values and other external metric values, as shown in Table  3.

To further highlight the strength of CMI in aligning with all these 
different external metrics, we additionally provide a comparison using 
three widely used internal evaluation metrics (Bai and Liang, 2015; Sulc 
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Fig. 6. Each boxplot contains 18 × 100 clustering results, where different metrics are represented in rows and different partition types in columns. The results in each boxplot are 
divided into two groups: one corresponding to clustering results with CMI > 0.5, and the other with CMI < 0.5. In all cases, the metrics in the former group tend to be significantly 
larger than those in the latter group, as determined by the Mann–Whitney U test (one-tailed).
Table 3
Comparison among CMI and three widely used internal evaluation metrics in terms of their correlation coefficients with external evaluation metrics. For ease of comparison, 
absolute values are taken for KMF, Entropy, and CU, which are negatively correlated with the external metrics. All CMI/KMF/EE/CU-to-ACC/NMI/ARI/FSC sample pairs are 
derived from 7 × 100 partitions, as presented in Table  2. The strongest correlation coefficient across the internal evaluation metrics is highlighted in bold, while statistically 
significant coefficients are underlined.
 Pearson Spearman Kendall

 ACC NMI ARI FSC ACC NMI ARI FSC ACC NMI ARI FSC  
 CMI 0.44 0.71 0.69 0.40 0.46 0.77 0.80 0.43 0.31 0.57 0.59 0.28 
 KMF 0.20 0.60 0.48 0.09 0.20 0.74 0.60 0.10 0.14 0.55 0.42 0.07 
 EE 0.13 0.59 0.44 0.03 0.13 0.69 0.53 0.04 0.10 0.53 0.37 0.03 
 CU 0.38 0.80 0.73 0.37 0.29 0.77 0.70 0.26 0.18 0.61 0.53 0.15 
 

et al., 2024): the 𝑘-modes objective function (KMF) (Huang, 1998), Ex-
pected Entropy (EE) (Li et al., 2004), and Category Utility (CU) (Mirkin, 
2001). These internal metrics are calculated based on their original 
formulations in the literature, with normalization adjustments applied. 
Specifically, KMF is divided by 𝑁𝑀 , while EE and CU are divided by 
𝑀 , to mitigate the influence of data scale and facilitate meaningful 
comparisons across data sets.

As shown in Table  3, the correlation coefficients indicate that 
CMI exhibits significant correlations with ACC, NMI, ARI, and FSC, 
whereas among the internal evaluation metrics, only CU is comparable 
to CMI. In contrast, KMF lacks a significant correlation with FSC, 
while EE shows no significant correlation with either ACC or FSC. 
Notably, CMI shows the highest overall consistency with all external 
9 
metrics according to both Spearman’s and Kendall’s rank correlation 
coefficients.

4.4. Cluster refinement

To refine the algorithm-derived clustering results in Table  2, we 
focus on individual clusters that are already statistically valid, with a 
majority of samples in the cluster passing the FWER control. If none of 
the individual clusters in a given partition are valid, we do not perform 
any refinement operations on such partitions.

The ACC of refined clustering results, after removing 𝑛 samples spec-
ified in a set 𝑜 = {𝑜1,… , 𝑜𝑛}, is calculated as ACC =

∑𝑁
𝑖=1 𝛿

(

𝑘̇𝑖 ,map(𝑘𝑖)
)

⋅1{𝑖∉𝑜}
𝑁−𝑛 ,

where 1 is an indicator function that equals 1 if the 𝑖th sample in 
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Table 4
Average external metrics for the refinement operation (@Refinement), based on input partitions generated by clustering algorithms. The 𝛥 represents the percentage increase 
relative to the original value, with the original value shown in Table  2 serving as the baseline for comparison. 𝛥 values exceeding 10% are marked in bold. The 𝛥 value in the 
final column shows the overall performance improvement relative to the original mean of each metric across all 18 data sets.
 @Refinement Ls Lc So Zo Ps Hr Ly Hd Sf Pt De Hv Bs Ca Bc Mm Tt Ce Overall  
 𝑘-modes ACC 0.555 0.549 0.856 0.737 0.570 0.373 0.453 0.416 0.522 0.314 0.590 0.867 0.423 0.768 0.982 0.818 0.555 0.385 0.596  
 𝛥 0% 4.88% 0.50% 2.30% 1.34% 0.95% 2.25% 5.21% 9.24% 6.23% 0.08% 0.14% 0% 1.83% 8.61% 0% 1.15% 0% 2.39%  
 NMI 0.248 0.250 0.841 0.761 0.035 0.009 0.124 0.172 0.344 0.347 0.573 0.462 0.016 0.212 0.858 0.326 0.015 0.069 0.315  
 𝛥 0% 25.66% 0.40% 1.49% 36.01% 26.78% 10.87% 12.68% 18.85% 2.44% 0.19% 0.72% 0% 1.19% 52.33% 0% 27.91% 0% 9.18%  
 ARI 0.127 0.173 0.772 0.696 0.029 −0.010 0.087 0.175 0.277 0.110 0.452 0.537 0.016 0.284 0.927 0.403 0.019 0.047 0.284  
 𝛥 0% 42.34% 0.73% 3.73% 36.55% −6.77% 12.70% 17.00% 28.61% 18.41% 0.23% 0.66% 0% 7.91% 38.24% 0% 21.01% 0% 10.53% 
 FSC 0.477 0.475 0.836 0.762 0.521 0.355 0.417 0.423 0.439 0.200 0.568 0.775 0.414 0.691 0.968 0.704 0.537 0.396 0.553  
 𝛥 0% 10.37% 0.55% 2.87% 1.59% 0.82% 2.40% 6.67% 13.39% 11.06% 0.13% 0.24% 0% 7.03% 12.89% 0% 0.41% 0% 3.65%  
 CDCDR ACC 0.471 0.571 0.903 0.707 0.614 0.488 0.497 0.474 0.447 0.319 0.723 0.861 0.449 0.639 0.984 0.798 0.559 0.393 0.605  
 𝛥 0% 6.08% 1.36% 2.58% 7.23% 0% 4.29% 22.18% 8.50% 13.23% 0.04% 3.51% 0% 1.52% 23.99% 0% 0% 0% 4.93%  
 NMI 0.153 0.260 0.894 0.728 0.064 0.354 0.164 0.290 0.236 0.363 0.813 0.432 0.038 0.079 0.826 0.303 0.006 0.075 0.338  
 𝛥 0% 26.63% 0.90% 3.06% 98.48% 0% 9.18% 70.85% 9.82% 8.40% 0.01% 9.95% 0% 0.70% 208.24% 0% 0% 0% 17.32% 
 ARI 0.041 0.177 0.855 0.627 0.061 0.282 0.163 0.261 0.147 0.119 0.689 0.511 0.043 0.107 0.919 0.372 0.013 0.038 0.301  
 𝛥 0% 47.32% 1.85% 4.56% 117.11% 0% 9.74% 83.98% 17.14% 28.55% 0.05% 10.89% 0% 1.82% 188.41% 0% 0% 0% 21.69% 
 FSC 0.406 0.470 0.897 0.706 0.542 0.611 0.451 0.500 0.354 0.202 0.755 0.778 0.423 0.593 0.978 0.695 0.535 0.403 0.572  
 𝛥 0% 11.11% 1.36% 3.72% 2.99% 0% 4.20% 31.35% 8.83% 19.78% 0.04% 3.77% 0% 0.65% 29.38% 0% 0% 0% 5.69%  
 Het2Hom ACC 0.533 0.560 1 0.720 0.502 0.333 0.517 0.401 0.474 0.321 0.750 0.877 0.467 0.829 0.979 0.818 0.556 0.368 0.611  
 𝛥 0% 0.50% 0% 2.33% 0% 0% 4.35% 14.75% 7.05% 13.08% 0% 0.40% 0% 0.27% 1.24% 0% 0.78% 0% 1.69%  
 NMI 0.238 0.288 1 0.778 0.002 5.E−17 0.188 0.246 0.281 0.384 0.771 0.493 0.003 0.359 0.846 0.327 0.013 0.063 0.349  
 𝛥 0% 15.59% 0% −1.35% 0% 0% 17.85% 43.94% 12.62% 11.06% 0% 2.54% 0% 0.53% 8.90% 0% 7.47% 0% 4.76%  
 ARI 0.099 0.211 1 0.649 4.E−04 −0.015 0.198 0.214 0.212 0.150 0.706 0.568 7.E−04 0.447 0.917 0.404 0.015 0.030 0.323  
 𝛥 0% 25.86% 0% −0.41% 0% 0% 15.01% 68.59% 19.56% 29.64% 0% 1.87% 0% 1.25% 5.26% 0% 12.15% 0% 5.18%  
 FSC 0.439 0.530 1 0.722 0.662 0.327 0.467 0.431 0.367 0.217 0.762 0.789 0.597 0.736 0.963 0.703 0.536 0.394 0.591  
 𝛥 0% 9.64% 0% 0.77% 0% 0% 4.52% 19.86% 8.79% 21.39% 0% 0.66% 0% 0.84% 2.25% 0% 0.59% 0% 2.38%  
 CMS ACC 0.563 0.625 1 0.664 0.844 0.341 0.507 0.326 0.465 0.367 0.811 0.880 0.381 0.718 0.977 0.826 0.517 0.400 0.623  
 𝛥 0% 7.29% 0% 4.94% 10.09% 0% 1.03% 2.81% 5.60% 40.39% 0% 0.17% 0% 6.95% 1.28% 0% 0% 0% 3.28%  
 NMI 0.287 0.349 1 0.690 0.464 3.E−04 0.181 0.137 0.275 0.406 0.804 0.498 0.014 0.206 0.835 0.338 5.E−05 0.117 0.367  
 𝛥 0% 50.70% 0% 7.03% 54.66% 0% −0.87% 8.35% 17.60% 30.91% 0% 1.57% 0% 62.27% 7.38% 0% 0% 0% 10.30% 
 ARI 0.167 0.244 1 0.553 5.E−01 −0.015 0.193 0.098 0.212 0.174 0.745 0.575 0.015 0.253 0.908 0.426 −0.001 0.077 0.340  
 𝛥 0% 45.57% 0% 11.37% 78.15% 0% 0.76% 9.45% 15.51% 93.39% 0% 0.78% 0% 68.21% 5.42% 0% 0% 0% 11.42% 
 FSC 0.473 0.520 1 0.639 0.765 0.327 0.455 0.331 0.367 0.244 0.795 0.793 0.388 0.667 0.958 0.713 0.526 0.405 0.576  
 𝛥 0% 13.82% 0% 8.51% 14.55% 0% 0.44% 2.78% 8.16% 60.35% 0% 0.29% 0% 11.45% 2.33% 0% 0% 0% 4.36%  
 ADC ACC 0.526 0.518 0.898 0.741 0.659 0.382 0.512 0.441 0.516 0.346 0.640 0.873 0.442 0.672 0.973 0.820 0.552 0.369 0.604  
 𝛥 0% 1.94% 0.71% 2.81% 7.03% 0.02% 2.28% 4.24% 6.44% 10.68% 0.17% 0.16% 0% 3.08% 1.53% 0% 1.75% 0% 2.07%  
 NMI 0.214 0.198 0.886 0.793 0.137 0.011 0.173 0.198 0.336 0.385 0.687 0.483 0.029 0.150 0.827 0.328 0.016 0.040 0.327  
 𝛥 0% 7.76% 0.12% 1.28% 69.73% 4.39% 15.18% 10.78% 11.84% 8.50% −0.02% 1.60% 0% 16.29% 10.68% 0% 76.75% 0% 5.46%  
 ARI 0.077 0.114 0.842 0.700 0.157 −0.003 0.155 0.212 0.266 0.151 0.555 0.555 0.028 0.178 0.902 0.410 0.023 0.026 0.297  
 𝛥 0% 12.62% 0.63% 2.80% 91.96% 5.41% 12.05% 12.95% 16.50% 21.17% 0.22% 0.77% 0% 15.54% 6.59% 0% 96.43% 0% 6.25%  
 FSC 0.440 0.470 0.890 0.764 0.595 0.343 0.463 0.444 0.427 0.226 0.655 0.783 0.424 0.645 0.956 0.706 0.535 0.386 0.564  
 𝛥 0% 4.43% 0.51% 2.36% 6.89% 0.12% 3.12% 5.76% 9.07% 16.08% 0.18% 0.29% 0% 3.81% 2.73% 0% 1.24% 0% 2.47%  
 COForest ACC 0.554 0.579 0.839 0.718 0.665 0.408 0.518 0.438 0.460 0.300 0.709 0.880 0.456 0.724 0.940 0.809 0.567 0.383 0.608  
 𝛥 0% 5.63% 0.35% 1.65% 6.32% 0.15% 3.89% 18.96% 10.35% 8.21% 0.07% 0.43% 0% 1.46% 2.07% 0% 0.54% 0% 2.60%  
 NMI 0.283 0.302 0.876 0.776 0.145 0.029 0.168 0.235 0.285 0.348 0.789 0.500 0.034 0.215 0.761 0.320 0.010 0.095 0.343  
 𝛥 0% 21.66% 0.07% 0.32% 71.35% −0.17% 29.16% 73.49% 23.90% 7.42% 0.00% 3.67% 0% 1.89% 13.91% 0% 20.13% 0% 7.86%  
 ARI 0.139 0.203 0.806 0.672 0.167 0.016 0.148 0.221 0.187 0.109 0.660 0.577 0.034 0.274 0.828 0.399 0.019 0.055 0.306  
 𝛥 0% 38.66% 0.32% 0.93% 82.35% 0.03% 21.94% 89.90% 39.96% 22.01% 0.10% 2.02% 0% 9.73% 9.07% 0% 22.02% 0% 8.96%  
 FSC 0.468 0.501 0.860 0.739 0.595 0.353 0.464 0.461 0.369 0.191 0.734 0.794 0.438 0.670 0.928 0.706 0.541 0.396 0.567  
 𝛥 0% 10.70% 0.28% 1.02% 7.80% 0.27% 5.42% 27.96% 12.97% 14.44% 0.07% 0.72% 0% 4.05% 3.40% 0% 0.44% 0% 3.64%  
𝐷 is not in the outlier set and 0 otherwise. This formula ensures 
that only the samples not identified as outliers contribute to the ACC 
calculation. Other external metrics, including NMI, ARI, and FSC, are 
computed in the same manner based on the remaining samples and 
their corresponding cluster labels after outlier removal.

The refinement performance, expressed in terms of the average 
ACC, NMI, ARI, and FSC over 6 × 100 clustering results for each 
data set, grouped by the 𝑘-modes, CDCDR, Het2Hom, CMS, ADC, and 
COForest algorithms, is shown in Table  4, along with the percentage 
improvement compared to the original metric values. Additionally, we 
record the frequency of metric improvement or deterioration in Fig. 
7, where each row of subfigures represents the results for a specific 
partition group. The observed refinement performance is summarized 
as follows:

• Overall performance: As shown in the last column of Table 
4, except for the relatively minor improvements in Het2Hom, 
ADC, and COForest partitions, other partition groups achieved 
an improvement of over 10% in at least one metric. Specifically, 
𝑘-modes partitions showed a 10.5% increase in ARI, CDCDR 
partitions were improved by 17.3% in NMI and 21.7% in ARI, 
while CMS partitions exhibited gains of 10.3% in NMI and 11.4% 
in ARI. Furthermore, as depicted in Fig.  7, after the refinement 
operation, the proportion of cases with improved metrics ex-
ceeded those with deteriorated metrics across almost all partitions 
and data sets. Even in Het2Hom partitions, where NMI and ARI 
decreased in the Zo data set, the corresponding stacked bars for 
10 
ACC and FSC still showed absolute improvements, likely due to 
the potential bias of different metrics.

• Analysis of 0% improvement cases: This phenomenon occurs 
when no outliers are detected within any individual cluster of 
a given partition, preventing refinement operations from being 
performed. There are two distinct scenarios: (i) our refinement 
operation is only applied to statistically valid clusters, excluding 
partitions where all clusters are invalid; (ii) the partition consists 
entirely of compact, well-formed clusters with no outliers. This 
is reflected in the CMI values shown in Table  2. For example, in 
the CMS partition group, which follows the same interpretation 
as other partition groups, 0% improvement cases fall into two 
categories: (i) results observed in data sets Ls, Hr, Bs, Mm, Tt, 
and Ce, where all clusters are invalid, with CMI values being low 
or near zero; (ii) results observed in data sets So and De, where no 
outliers exist in any individual cluster, have CMI = 1. Notably, in 
these latter outlier-free cases, external metrics also indicate high 
clustering quality.

In summary, our refinement operation is generally effective in 
improving cluster quality when a partition contains valid but not 
perfectly compact clusters, allowing for adjustments based on sufficient 
clustering structure information.
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Fig. 7. The stacked barplots depicting the detailed performance of cluster refinement for each data set. These plots illustrate the percentage of the 100 clustering results per data 
set, categorized based on whether the external metric is better than, worse than, or the same as the original one after removing outliers.
4.5. Cluster enhancement

Another approach we explore to improve the quality of the given 
optimized partitions involves reassigning each sample to the target 
cluster with the minimal cluster membership 𝑝-value, provided that this 
𝑝-value passes the FWER control for the target cluster.

This refinement operation differs from the previous refinement 
approach in several aspects: (i) it retains all samples in the original 
data set without removing any, even if some are identified as outliers 
for all clusters. In such cases, the sample maintains its original cluster 
membership without reassignment, leading to 0% improvement cases; 
(ii) Even if a sample has a statistically significant 𝑝-value for its current 
cluster membership, it will still be reassigned to a target cluster if a 
smaller cluster membership 𝑝-value exists. In this regard, this approach 
takes an additional step forward to potentially improve clustering 
quality.
11 
As the enhancement operation is not well-built and simply deter-
mines the optimal assignment for all samples before reassigning them 
simultaneously, this naïve one-step reassignment approach inevitably 
carries a risk of deteriorating clustering quality. This suggests that the 
reassignment of a single sample can influence the entire partition and 
impact the assignments of other samples, similar to how clustering 
algorithms typically adopt an iterative optimization strategy based on 
sample assignments from the previous round. In some of the following 
clustering quality deterioration cases, this issue fundamentally arises 
from the limitations of our indicator-based approach, which functions 
as a post-clustering method and cannot replace optimization-based 
clustering algorithms.

The performance gain after the cluster enhancement operation is 
presented in Table  5 in the same format as Table  4. Since all samples 
are retained and external metrics are computed on the same data 
set before and after enhancement, we explicitly highlight the metrics 
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Table 5
Average external metrics for the enhancement operation (@Enhancement), with the same display format and 𝛥 calculation method as in Table  4 for improvement comparison. 
Enhanced clustering results on 18 data sets for metrics showing significant improvement over their original values in Table  2 are underlined (marked on the metric names). This 
is verified by the Wilcoxon signed rank test (one-tailed) with a 95% confidence interval. Metrics that decline by more than 5% from their original values are marked in blue.
 @Enhancement Ls Lc So Zo Ps Hr Ly Hd Sf Pt De Hv Bs Ca Bc Mm Tt Ce Overall  
 𝑘-modes ACC 0.555 0.530 0.890 0.779 0.562 0.370 0.473 0.464 0.487 0.286 0.712 0.874 0.423 0.752 0.958 0.818 0.550 0.385 0.604  
 𝛥 0% 1.25% 4.55% 8.05% −0.03% 0.14% 6.61% 17.40% 1.89% −3.19% 20.85% 0.95% 0% −0.34% 5.95% 0% 0.23% −0.01% 3.67%  
 NMI 0.248 0.210 0.887 0.734 0.026 0.008 0.136 0.187 0.274 0.226 0.657 0.464 0.016 0.215 0.731 0.326 0.012 0.069 0.301  
 𝛥 0% 5.54% 5.84% −2.01% 0.08% 5.31% 21.65% 22.14% −5.42% −33.13% 14.84% 1.11% 0% 2.35% 29.72% 0% 3.37% 0.01% 4.59%  
 ARI 0.127 0.136 0.850 0.744 0.021 −0.009 0.087 0.215 0.202 0.060 0.645 0.558 0.016 0.258 0.836 0.403 0.017 0.047 0.290  
 𝛥 0% 11.84% 10.81% 10.76% 0.08% 1.25% 13.17% 44.18% −5.94% −35.04% 43.00% 4.53% 0% −2.17% 24.72% 0% 4.61% −0.11% 12.50% 
 FSC 0.477 0.441 0.894 0.804 0.512 0.351 0.436 0.473 0.395 0.198 0.726 0.785 0.414 0.635 0.926 0.704 0.536 0.396 0.561  
 𝛥 0% 2.33% 7.51% 8.61% −0.06% −0.36% 7.05% 19.33% 2.14% 9.81% 28.03% 1.58% 0% −1.77% 7.99% 0% 0.10% −0.02% 5.15%  
 CDCDR ACC 0.471 0.537 0.921 0.742 0.575 0.488 0.513 0.507 0.426 0.282 0.785 0.853 0.449 0.641 0.862 0.800 0.565 0.393 0.601  
 𝛥 0% −0.17% 3.32% 7.67% 0.35% 0% 7.69% 30.76% 3.44% 0.17% 8.55% 2.55% 0% 1.90% 8.59% 0.24% 0.97% 0% 4.09%  
 NMI 0.153 0.206 0.894 0.701 0.033 0.354 0.159 0.228 0.210 0.221 0.784 0.430 0.038 0.105 0.434 0.304 0.008 0.075 0.297  
 𝛥 0% 0.11% 0.96% −0.79% 1.94% 0% 6.04% 34.03% −2.38% −33.94% −3.45% 9.47% 0% 33.99% 62.16% 0.42% 37.52% 0% 3.05%  
 ARI 0.041 0.121 0.872 0.671 0.029 0.282 0.158 0.264 0.135 0.065 0.744 0.511 0.043 0.130 0.516 0.372 0.017 0.038 0.278  
 𝛥 0% 0.76% 3.83% 11.87% 3.03% 0% 6.89% 86.61% 8.16% −30.15% 8.06% 10.94% 0% 23.87% 62.02% 0.25% 28.46% 0% 12.42% 
 FSC 0.406 0.425 0.910 0.749 0.525 0.611 0.459 0.522 0.365 0.203 0.802 0.773 0.423 0.598 0.811 0.694 0.536 0.403 0.568  
 𝛥 0% 0.35% 2.81% 10.08% −0.15% 0% 6.01% 37.07% 12.41% 20.73% 6.23% 3.08% 0% 1.62% 7.29% −0.09% 0.18% 0% 4.84%  
 Het2Hom ACC 0.533 0.557 1 0.706 0.503 0.333 0.512 0.456 0.472 0.303 0.813 0.874 0.467 0.821 0.966 0.818 0.553 0.368 0.614  
 𝛥 0% 0% 0% 0.38% 0.30% 0% 3.41% 30.69% 6.52% 6.55% 8.43% 0% 0% −0.67% −0.15% 0% 0.15% 0% 2.15%  
 NMI 0.238 0.249 1 0.769 0.003 5.E−17 0.170 0.215 0.288 0.259 0.799 0.475 0.003 0.355 0.770 0.327 0.012 0.063 0.333  
 𝛥 0% 0.13% 0% −2.55% 53.60% 0% 6.66% 25.99% 15.48% −25.04% 3.64% −1.03% 0% −0.68% −0.95% 0% 1.81% 0% 0.03%  
 ARI 0.099 0.168 1 0.650 0.002 −0.015 0.180 0.245 0.196 0.076 0.770 0.557 7.E−04 0.426 0.866 0.404 0.014 0.030 0.315  
 𝛥 0% 0.31% 0% −0.29% 547% 0% 4.75% 93.53% 10.47% −34.32% 9.01% −3.84E−05 0% −3.34% −0.62% 0% 3.90% 0% 2.72%  
 FSC 0.439 0.484 1 0.724 0.662 0.327 0.460 0.481 0.364 0.203 0.816 0.784 0.597 0.723 0.939 0.703 0.534 0.394 0.591  
 𝛥 0% 0.10% 0% 0.95% −0.02% 0% 2.82% 33.85% 7.95% 13.55% 7.02% 0.01% 0% −0.95% −0.26% 0% 0.05% 0% 2.28%  
 CMS ACC 0.563 0.600 1 0.784 0.766 0.341 0.511 0.385 0.489 0.274 0.856 0.874 0.381 0.672 0.966 0.826 0.517 0.400 0.623  
 𝛥 0% 2.90% 0% 23.83% 0% 0% 1.87% 21.69% 10.88% 4.85% 5.54% −0.52% 0% 0.06% 0.15% 0% 0% 0% 3.21%  
 NMI 0.287 0.342 1 0.715 0.263 3.E−04 0.182 0.154 0.284 0.217 0.855 0.475 0.014 0.129 0.780 0.338 5.E−05 0.117 0.342  
 𝛥 0% 47.56% 0% 10.84% −12.17% 0% −0.40% 21.23% 21.38% −29.86% 6.34% −3.06% 0% 2.11% 0.30% 0% 0% 0% 2.81%  
 ARI 0.167 0.263 1 0.727 0.279 −0.015 0.193 0.145 0.206 0.059 0.843 0.557 0.015 0.150 0.866 0.426 −0.001 0.077 0.331  
 𝛥 0% 56.52% 0% 46.38% −0.14% 0% 0.65% 61.35% 12.12% −33.84% 13.22% −2.43% 0% −0.60% 0.62% 0% 0% 0% 8.41%  
 FSC 0.473 0.549 1 0.793 0.658 0.327 0.458 0.385 0.384 0.194 0.878 0.784 0.388 0.598 0.939 0.713 0.526 0.405 0.581  
 𝛥 0% 20.30% 0% 34.67% −1.38% 0% 1.11% 19.46% 13.09% 27.76% 10.32% −0.85% 0% 0.04% 0.28% 0% 0% 0% 5.24%  
 ADC ACC 0.526 0.511 0.912 0.801 0.618 0.382 0.520 0.469 0.495 0.292 0.715 0.874 0.442 0.662 0.963 0.820 0.543 0.369 0.606  
 𝛥 0% 0.68% 2.29% 11.14% 0.41% 0% 3.84% 10.89% 2.11% −6.74% 12.04% 0.26% 0% 1.57% 0.47% 0% 0.03% −0.02% 2.39%  
 NMI 0.214 0.189 0.888 0.755 0.084 0.010 0.169 0.200 0.285 0.234 0.695 0.475 0.029 0.142 0.758 0.328 0.009 0.039 0.306  
 𝛥 0% 2.74% 0.30% −3.61% 3.89% −1.49% 12.12% 12.16% −5.25% −34.14% 1.22% 0.00% 0% 10.44% 1.37% 0% −1.73% −0.12% −1.48% 
 ARI 0.077 0.108 0.856 0.796 0.086 −0.004 0.142 0.236 0.217 0.063 0.642 0.557 0.028 0.160 0.856 0.410 0.012 0.026 0.293  
 𝛥 0% 6.67% 2.30% 16.99% 5.12% −4.20% 2.61% 25.68% −4.89% −49.38% 15.83% 1.24% 0% 4.29% 1.10% 0% 1.75% −0.33% 4.68%  
 FSC 0.440 0.455 0.900 0.846 0.556 0.342 0.471 0.479 0.407 0.199 0.726 0.784 0.424 0.618 0.935 0.706 0.528 0.386 0.567  
 𝛥 0% 0.94% 1.68% 13.31% −0.06% −0.06% 4.91% 13.93% 3.76% 2.60% 10.96% 0.45% 0% −0.46% 0.45% 0% 0.04% −0.04% 2.98%  
 COForest ACC 0.554 0.549 0.855 0.768 0.628 0.408 0.527 0.451 0.466 0.289 0.774 0.871 0.456 0.698 0.943 0.809 0.570 0.383 0.611  
 𝛥 0% 0.11% 2.34% 8.66% 0.30% 0.15% 5.62% 22.59% 11.76% 4.21% 9.29% −0.59% −0.01% −2.21% 2.37% 0% 1.08% −0.13% 3.07%  
 NMI 0.283 0.249 0.871 0.750 0.086 0.029 0.155 0.196 0.239 0.227 0.768 0.466 0.034 0.185 0.699 0.320 0.011 0.094 0.315  
 𝛥 0% 0.48% −0.54% −2.97% 1.52% −0.72% 18.89% 44.90% 4.03% −29.88% −2.60% −3.31% 0.07% −12.33% 4.60% 0% 32.91% −0.24% −1.00% 
 ARI 0.139 0.148 0.819 0.740 0.093 0.016 0.146 0.226 0.166 0.068 0.728 0.550 0.034 0.206 0.797 0.399 0.020 0.055 0.297  
 𝛥 0% 1.01% 1.93% 11.10% 2.12% −0.73% 20.15% 94.15% 24.12% −23.59% 10.45% −2.75% 0.01% −17.48% 4.98% 0% 30.86% −0.17% 5.73%  
 FSC 0.468 0.453 0.870 0.800 0.552 0.352 0.471 0.474 0.365 0.202 0.790 0.781 0.438 0.623 0.911 0.706 0.539 0.396 0.566  
 𝛥 0% 0.28% 1.44% 9.30% 0.02% −0.04% 7.02% 31.47% 11.71% 21.07% 7.78% −0.97% 0.00% −3.24% 1.51% 0% 0.18% −0.09% 3.47%  
with statistically significant improvements. The observed enhancement 
performance is summarized as follows:

• Overall performance: As indicated by the underlined metrics 
in Table  5, significant improvements are observed in ACC and 
FSC across all partition groups. Additionally, strong evidence of 
ARI gains, which also achieve a 10% overall improvement, is 
specifically observed in the 𝑘-modes and CDCDR partition groups. 
Therefore, applying our enhancement operation to these two 
algorithms is recommended to further improve clustering quality. 
Although Het2Hom and CMS, as representative SOTA clustering 
algorithms, have already achieved higher clustering performance 
than classical and many other methods, our enhancement opera-
tion still yields noticeable improvements in certain data sets, such 
as Het2Hom partitions on Ps, Hd, and Sf, and CMS partitions on 
Lc, Zo, Hd, Sf, and De. Compared to the refinement operation, 
which typically failed to refine cases such as Het2Hom partitions 
on Ps and CMS partitions on De (0% improvement), as shown in 
Table  4, the enhancement operation can further improve cluster 
quality in these outlier-free cases by reassigning samples to target 
clusters with smaller 𝑝-values.

• Analysis of deterioration cases: Some enhancement results ex-
hibit metric declines, which are marked in Table  5 where the 
decrease exceeds 5% to exclude trivial deviations. In each par-
tition where deterioration occurs, at most two metrics show a 
noticeable decline, primarily in NMI and ARI, while other met-
rics, such as FSC, still display notable improvements in different 
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partition groups of Pt. Considering metric biases and potential 
conflicts among different metrics, these results cannot be deemed 
complete failures as long as not all metrics indicate deterioration. 
The only clear failures are observed in CMS partitions on Ps, ADC 
partitions on Pt, and COForest partitions on Ca, in contrast to the 
refinement operation, which successfully improved all metrics on 
these partitions, as shown in Table  4. This highlights the crucial 
role of outliers, as their disruptive impact on cluster reassignment 
often makes removal more effective than reassignment, espe-
cially in our non-iterative, non-optimized enhancement operation. 
Moreover, the enhancement operation carries a higher risk of 
deterioration in partitions of Pt (which contains 21 clusters), as 
the large number of clusters increases the cumulative likelihood 
of reassignment errors, with both individual and multiple samples 
having more possible cluster membership assignments. In con-
trast, Hd (5 clusters) and Sf (6 clusters) exhibit the most similar 
characteristics to Pt, where partitions with CMI indicate high 
quality while nearly all external metrics suggest low quality, as 
evidenced in Table  2. However, enhanced partitions of these two 
data sets show much better performance with fewer declining 
metrics. Notably, Hd, with fewer clusters than the other two, 
allows the enhancement operation to achieve the most substantial 
quality improvements across all partition groups.
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Fig. 8. The execution time of SigCM’s two steps, Fisher’s exact test step and the Binomial test step, on large-scale categorical data sets using an Intel i7-12700K@3.60 GHz personal 
computer. All samples in each data set were processed based on their ground-truth assignments. For the parallel execution of Fisher’s exact test step, 12 workers were utilized, 
managed by MATLAB 2023b. The data sets used include Nursery, Adult, and Localization, with 𝑁 equal to 12960, 32561, and 164860, and 𝑀 equal to 8, 8, and 2, respectively.
4.6. Time efficiency on large-scale data

Finally, to evaluate the running efficiency of our SigCM-based appli-
cations and provide guidance on the expected and affordable execution 
time for different data scales, we executed the SigCM algorithm on 
all samples in each data set based on the ground-truth partition. This 
involved running the SigCM algorithm once for each of the 𝑁 samples 
in a data set, resulting in an overall time complexity of (𝑁2𝑀). The 
actual runtime for the large-scale data sets, including the largest Ce 
data set used in former experiments and three newly added data sets, 
is presented in Fig.  8.

From the observed runtime, the Binomial test step in SigCM is 
time-efficient, whereas the Fisher’s exact test step becomes increasingly 
time-consuming as data scale grows, leading to a runtime exceeding 
2000 s when 𝑁 = 164860. Since SigCM runs independently for each 
sample without computational dependencies, parallel computing serves 
as a practical approach to reduce runtime, as shown by the red bars 
in Fig.  8. A more fundamental approach for improving the running 
efficiency of Fisher’s exact test step is to approximate 𝑝-values using an 
upper bound for Eq.  (2), utilizing a formula proposed in Hämäläinen 
(2016). This method reduces computational complexity by considering 
fewer terms in the calculation, providing a computationally efficient 
alternative to the original cumulative calculation, albeit with some loss 
of precision.

5. Conclusions

To ascertain the potential true cluster labels for each categorical 
sample in an unsupervised manner, we have proposed a novel al-
gorithm for assessing cluster membership. This algorithm leverages 
hypothesis testing techniques, specifically Fisher’s exact test and meta-
analysis, to provide a statistical significance assessment of cluster mem-
berships. The analytical 𝑝-value derived is then applied to improve 
the quality of clustering results via refining and enhancing individual 
clusters.

Although our experimental findings highlight the effectiveness of 
our method, there is potential for further advancement: (1) Theoreti-
cally, we currently assume attribute independence for a straightforward 
meta-analysis approach to derive the final 𝑝-value. This assumption 
generally does not align with practical scenarios. Exploring more com-
prehensive meta-analysis methods that account for attribute dependen-
cies is an essential issue for future exploration. (2) The use of 𝑝-values 
for refinement and enhancement can be further improved. For example, 
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integrating the two processes into a unified strategy or designing more 
sophisticated approaches, such as multi-step heuristic reassignments 
constrained by specific rules, may yield more robust improvements 
in cluster quality. Additionally, we aim to develop a new clustering 
algorithm that incorporates accurately evaluated cluster membership 
𝑝-values as a guideline for discovering meaningful clusters. (3) Given 
the limited availability of outlier detection methods for categorical 
data (Cabral et al., 2025), and the fact that our cluster membership 
evaluation method defines outliers relative to reference clusters, it 
cannot yet serve as a standalone outlier detection method. Extending 
the 𝑝-value-based approach for this purpose is a promising direction for 
future research.
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